Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0150223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38315015

RESUMO

Capsid assembly is critical in the hepatitis B virus (HBV) life cycle, mediated by the viral core protein. Capsid assembly is the target for new anti-viral therapeutics known as capsid assembly modulators (CAMs) of which the CAM-aberrant (CAM-A) class induces aberrant shaped core protein structures and leads to hepatocyte cell death. This study aimed to identify the mechanism of action of CAM-A modulators leading to HBV-infected hepatocyte elimination where CAM-A-mediated hepatitis B surface antigen (HBsAg) reduction was evaluated in a stable HBV replicating cell line and in AAV-HBV-transduced C57BL/6, C57BL/6 SCID, and HBV-infected chimeric mice with humanized livers. Results showed that in vivo treatment with CAM-A modulators induced pronounced reductions in hepatitis B e antigen (HBeAg) and HBsAg, associated with a transient alanine amino transferase (ALT) increase. Both HBsAg and HBeAg reductions and ALT increase were delayed in C57BL/6 SCID and chimeric mice, suggesting that adaptive immune responses may indirectly contribute. However, CD8+ T cell depletion in transduced wild-type mice did not impact antigen reduction, indicating that CD8+ T cell responses are not essential. Transient ALT elevation in AAV-HBV-transduced mice coincided with a transient increase in endoplasmic reticulum stress and apoptosis markers, followed by detection of a proliferation marker. Microarray data revealed antigen presentation pathway (major histocompatibility complex class I molecules) upregulation, overlapping with the apoptosis. Combination treatment with HBV-specific siRNA demonstrated that CAM-A-mediated HBsAg reduction is dependent on de novo core protein translation. To conclude, CAM-A treatment eradicates HBV-infected hepatocytes with high core protein levels through the induction of apoptosis, which can be a promising approach as part of a regimen to achieve functional cure. IMPORTANCE: Treatment with hepatitis B virus (HBV) capsid assembly modulators that induce the formation of aberrant HBV core protein structures (CAM-A) leads to programmed cell death, apoptosis, of HBV-infected hepatocytes and subsequent reduction of HBV antigens, which differentiates CAM-A from other CAMs. The effect is dependent on the de novo synthesis and high levels of core protein.


Assuntos
Antivirais , Apoptose , Regulação Viral da Expressão Gênica , Antígenos do Núcleo do Vírus da Hepatite B , Vírus da Hepatite B , Hepatócitos , Biossíntese de Proteínas , Animais , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Apoptose/efeitos dos fármacos , Capsídeo/química , Capsídeo/classificação , Capsídeo/efeitos dos fármacos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/metabolismo , Hepatite B/virologia , Antígenos do Núcleo do Vírus da Hepatite B/biossíntese , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/metabolismo , Vírus da Hepatite B/crescimento & desenvolvimento , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/patogenicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia , Camundongos Endogâmicos C57BL , Camundongos SCID , Replicação Viral , Linhagem Celular , Linfócitos T CD8-Positivos/imunologia , Apresentação de Antígeno
2.
Comput Biol Med ; 171: 108231, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422965

RESUMO

Spatial heterogeneity of cells in liver biopsies can be used as biomarker for disease severity of patients. This heterogeneity can be quantified by non-parametric statistics of point pattern data, which make use of an aggregation of the point locations. The method and scale of aggregation are usually chosen ad hoc, despite values of the aforementioned statistics being heavily dependent on them. Moreover, in the context of measuring heterogeneity, increasing spatial resolution will not endlessly provide more accuracy. The question then becomes how changes in resolution influence heterogeneity indicators, and subsequently how they influence their predictive abilities. In this paper, cell level data of liver biopsy tissue taken from chronic Hepatitis B patients is used to analyze this issue. Firstly, Morisita-Horn indices, Shannon indices and Getis-Ord statistics were evaluated as heterogeneity indicators of different types of cells, using multiple resolutions. Secondly, the effect of resolution on the predictive performance of the indices in an ordinal regression model was investigated, as well as their importance in the model. A simulation study was subsequently performed to validate the aforementioned methods. In general, for specific heterogeneity indicators, a downward trend in predictive performance could be observed. While for local measures of heterogeneity a smaller grid-size is outperforming, global measures have a better performance with medium-sized grids. In addition, the use of both local and global measures of heterogeneity is recommended to improve the predictive performance.


Assuntos
Cirrose Hepática , Humanos , Cirrose Hepática/diagnóstico , Biópsia , Simulação por Computador , Biomarcadores
3.
Comput Biol Med ; 165: 107382, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634463

RESUMO

The organization and interaction between hepatocytes and other hepatic non-parenchymal cells plays a pivotal role in maintaining normal liver function and structure. Although spatial heterogeneity within the tumor micro-environment has been proven to be a fundamental feature in cancer progression, the role of liver tissue topology and micro-environmental factors in the context of liver damage in chronic infection has not been widely studied yet. We obtained images from 110 core needle biopsies from a cohort of chronic hepatitis B patients with different fibrosis stages according to METAVIR score. The tissue sections were immunofluorescently stained and imaged to determine the locations of CD45 positive immune cells and HBsAg-negative and HBsAg-positive hepatocytes within the tissue. We applied several descriptive techniques adopted from ecology, including Getis-Ord, the Shannon Index and the Morisita-Horn Index, to quantify the extent to which immune cells and different types of liver cells co-localize in the tissue biopsies. Additionally, we modeled the spatial distribution of the different cell types using a joint log-Gaussian Cox process and proposed several features to quantify spatial heterogeneity. We then related these measures to the patient fibrosis stage by using a linear discriminant analysis approach. Our analysis revealed that the co-localization of HBsAg-negative hepatocytes with immune cells and the co-localization of HBsAg-positive hepatocytes with immune cells are equally important factors for explaining the METAVIR score in chronic hepatitis B patients. Moreover, we found that if we allow for an error of 1 on the METAVIR score, we are able to reach an accuracy of around 80%. With this study we demonstrate how methods adopted from ecology and applied to the liver tissue micro-environment can be used to quantify heterogeneity and how these approaches can be valuable in biomarker analyses for liver topology.


Assuntos
Hepatite B Crônica , Humanos , Antígenos de Superfície da Hepatite B , Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Fibrose , Cirrose Hepática
4.
Front Immunol ; 12: 615645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108956

RESUMO

Fcγ receptors (FcγR), cell-surface glycoproteins that bind antigen-IgG complexes, control both humoral and cellular immune responses. The FCGR locus on chromosome 1q23.3 comprises five homologous genes encoding low-affinity FcγRII and FcγRIII, and displays functionally relevant polymorphism that impacts on human health. Recurrent events of non-allelic homologous recombination across the FCGR locus result in copy-number variation of ~82.5 kbp-long fragments known as copy-number regions (CNR). Here, we characterize a recently described deletion that we name CNR5, which results in loss of FCGR3A, FCGR3B, and FCGR2C, and generation of a recombinant FCGR3B/A gene. We show that the CNR5 recombination spot lies at the beginning of the third FCGR3 intron. Although the FCGR3B/A-encoded hybrid protein CD16B/A reaches the plasma membrane in transfected cells, its possible natural expression, predictably restricted to neutrophils, could not be demonstrated in resting or interferon γ-stimulated cells. As the CNR5-deletion was originally described in an Ecuadorian family from Llano Grande (an indigenous community in North-Eastern Quito), we characterized the FCGR genetic variation in two populations from the highlands of Ecuador. Our results reveal that CNR5-deletion is relatively frequent in Llano Grande (5 carriers out of 36 donors). Furthermore, we found a high frequency of two strong-phagocytosis variants: the FCGR3B-NA1 haplotype and the CNR1 duplication, which translates into an increased FCGR3B and FCGR2C copy-number. CNR1 duplication was particularly increased in Llano Grande, 77.8% of the studied sample carrying at least one such duplication. In contrast, an extended haplotype CD16A-176V - CD32C-ORF+2B.2 - CD32B-2B.4 including strong activating and inhibitory FcγR variants was absent in Llano Grande and found at a low frequency (8.6%) in Ecuador highlands. This particular distribution of FCGR polymorphism, possibly a result of selective pressures, further confirms the importance of a comprehensive, joint analysis of all genetic variations in the locus and warrants additional studies on their putative clinical impact. In conclusion, our study confirms important ethnic variation at the FCGR locus; it shows a distinctive FCGR polymorphism distribution in Ecuador highlands; provides a molecular characterization of a novel CNR5-deletion associated with CD16A and CD16B deficiency; and confirms its presence in that population.


Assuntos
Variações do Número de Cópias de DNA , Genética Populacional , Polimorfismo de Nucleotídeo Único , Receptores de IgG/genética , Alelos , Linhagem Celular , Equador , Proteínas Ligadas por GPI/genética , Expressão Gênica , Loci Gênicos , Variação Genética , Genótipo , Granulócitos/metabolismo , Humanos
8.
Mol Cancer Ther ; 17(2): 575-587, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29367266

RESUMO

Metastatic pancreatic ductal adenocarcinomas (PDAC) are incurable due to the rapid development of resistance to all current therapeutics. Oncolytic adenoviral mutants have emerged as a promising new strategy that negates such resistance. In contrast to normal tissue, the majority of PDACs express the αvß6 integrin receptor. To exploit this feature, we modified our previously reported oncolytic adenovirus, AdΔΔ, to selectively target αvß6 integrins to facilitate systemic delivery. Structural modifications to AdΔΔ include the expression of the small but potent αvß6-binding peptide, A20FMDV2, and ablation of binding to the native coxsackie and adenovirus receptor (CAR) within the fiber knob region. The resultant mutant, Ad5-3Δ-A20T, infected and killed αvß6 integrin-expressing cells more effectively than the parental wild-type (Ad5wt) virus and AdΔΔ. Viral uptake through αvß6 integrins rather than native viral receptors (CAR, αvß3 and αvß5 integrins) promoted viral propagation and spread. Superior efficacy of Ad5-3Δ-A20T compared with Ad5wt was demonstrated in 3D organotypic cocultures, and similar potency between the two viruses was observed in Suit-2 in vivo models. Importantly, Ad5-3Δ-A20T infected pancreatic stellate cells at low levels, which may further facilitate viral spread and cancer cell elimination either as a single agent or in combination with the chemotherapy drug, gemcitabine. We demonstrate that Ad5-3Δ-A20T is highly selective for αvß6 integrin-expressing pancreatic cancer cells, and with further development, this new and exciting strategy can potentially be extended to improve the systemic delivery of adenoviruses to pancreatic cancer patients. Mol Cancer Ther; 17(2); 575-87. ©2018 AACR.


Assuntos
Adenoviridae/genética , Antígenos de Neoplasias/genética , Carcinoma Ductal Pancreático/terapia , Integrinas/genética , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Adenoviridae/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/virologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Integrinas/metabolismo , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Blood ; 130(10): 1205-1208, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28743717

RESUMO

Mutations in T-cell antigen receptor (TCR) subunit genes cause rare immunodeficiency diseases characterized by impaired expression of the TCR at the cell surface and selective T lymphopenia. Here, detailed analyses of spontaneously arising somatic mutations that recover CD247, and thus TCR expression, in a newly identified CD247-deficient patient are described. The recovery of CD247 expression in some patient T cells was associated with both reversion of the inactivating mutation and a variant with a compensating mutation that could reconstitute TCR expression, but not as efficiently as wild-type CD247. Multiple mutations were found in CD247 complementary DNAs (cDNAs) cloned from the patient as well as in cDNA and genomic DNA from other individuals, suggesting that genetic variation in this gene is frequent. Analyses of other genes mutated in primary immunodeficiency diseases (PIDs) where reversions have been described also revealed a higher rate of mutation than that observed for genes mutated in PIDs where revertants have not been identified or control genes. These data support the hypothesis that the occurrence of somatic mutations that may reconstitute genetic defects in PID is related to an increased propensity of those genes to mutate.


Assuntos
Complexo CD3/genética , Reparo do DNA/genética , Regulação da Expressão Gênica , Síndromes de Imunodeficiência/genética , Humanos , Leucócitos Mononucleares/metabolismo , Mutação/genética , Probabilidade
10.
Proc Natl Acad Sci U S A ; 114(28): E5645-E5654, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28652325

RESUMO

Many activating immunoreceptors associate with signaling adaptor molecules like FcεR1γ or CD247. FcεR1γ and CD247 share high sequence homology and form disulphide-linked homodimers that contain a pair of acidic aspartic acid residues in their transmembrane (TM) domains that mediate assembly, via interaction with an arginine residue at a similar register to these aspartic acids, with the activating immunoreceptors. However, this model cannot hold true for receptors like CD16A, whose TM domains do not contain basic residues. We have carried out an extensive site-directed mutagenesis analysis of the CD16A receptor complex and now report that the association of receptor with the signaling adaptor depends on a network of polar and aromatic residues along the length of the TM domain. Molecular modeling indicates that CD16A TM residues F202, D205, and T206 form the core of the membrane-embedded trimeric interface by establishing highly favorable contacts to the signaling modules through rearrangement of a hydrogen bond network previously identified in the CD247 TM dimer solution NMR structure. Strikingly, the amino acid D205 also regulates the turnover and surface expression of CD16A in the absence of FcεR1γ or CD247. Modeling studies indicate that similar features underlie the association of other activating immune receptors, including CD64 and FcεR1α, with signaling adaptor molecules, and we confirm experimentally that equivalent F, D, and T residues in the TM domain of FcεR1α markedly influence the biology of this receptor and its association with FcεR1γ.


Assuntos
Complexo CD3/metabolismo , Membrana Celular/metabolismo , Receptores de IgG/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteínas Ligadas por GPI/metabolismo , Glicosilação , Células HEK293 , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Camundongos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Multimerização Proteica , Receptores de IgE/metabolismo , Receptores Imunológicos/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA