Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746126

RESUMO

Copper (Cu) is an essential trace element required for respiration, neurotransmitter synthesis, oxidative stress response, and transcriptional regulation. Imbalance in Cu homeostasis can lead to several pathological conditions, affecting neuronal, cognitive, and muscular development. Mechanistically, Cu and Cu-binding proteins (Cu-BPs) have an important but underappreciated role in transcription regulation in mammalian cells. In this context, our lab investigates the contributions of novel Cu-BPs in skeletal muscle differentiation using murine primary myoblasts. Through an unbiased synchrotron X-ray fluorescence-mass spectrometry (XRF/MS) metalloproteomic approach, we identified the murine cysteine rich intestinal protein 2 (mCrip2) in a sample that showed enriched Cu signal, which was isolated from differentiating primary myoblasts derived from mouse satellite cells. Immunolocalization analyses showed that mCrip2 is abundant in both nuclear and cytosolic fractions. Thus, we hypothesized that mCrip2 might have differential roles depending on its cellular localization in the skeletal muscle lineage. mCrip2 is a LIM-family protein with 4 conserved Zn2+-binding sites. Homology and phylogenetic analyses showed that mammalian Crip2 possesses histidine residues near two of the Zn2+-binding sites (CX2C-HX2C) which are potentially implicated in Cu+-binding and competition with Zn2+. Biochemical characterization of recombinant human hsCRIP2 revealed a high Cu+-binding affinity for two and four Cu+ ions and limited redox potential. Functional characterization using CRISPR/Cas9-mediated deletion of mCrip2 in primary myoblasts did not impact proliferation, but impaired myogenesis by decreasing the expression of differentiation markers, possibly attributed to Cu accumulation. Transcriptome analyses of proliferating and differentiating mCrip2 KO myoblasts showed alterations in mRNA processing, protein translation, ribosome synthesis, and chromatin organization. CUT&RUN analyses showed that mCrip2 associates with a select set of gene promoters, including MyoD1 and metallothioneins, acting as a novel Cu-responsive or Cu-regulating protein. Our work demonstrates novel regulatory functions of mCrip2 that mediate skeletal muscle differentiation, presenting new features of the Cu-network in myoblasts.

2.
Nat Commun ; 15(1): 3167, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609367

RESUMO

Heme has a critical role in the chemical framework of the cell as an essential protein cofactor and signaling molecule that controls diverse processes and molecular interactions. Using a phylogenomics-based approach and complementary structural techniques, we identify a family of dimeric hemoproteins comprising a domain of unknown function DUF2470. The heme iron is axially coordinated by two zinc-bound histidine residues, forming a distinct two-fold symmetric zinc-histidine-iron-histidine-zinc site. Together with structure-guided in vitro and in vivo experiments, we further demonstrate the existence of a functional link between heme binding by Dri1 (Domain related to iron 1, formerly ssr1698) and post-translational regulation of succinate dehydrogenase in the cyanobacterium Synechocystis, suggesting an iron-dependent regulatory link between photosynthesis and respiration. Given the ubiquity of proteins containing homologous domains and connections to heme metabolism across eukaryotes and prokaryotes, we propose that DRI (Domain Related to Iron; formerly DUF2470) functions at the molecular level as a heme-dependent regulatory domain.


Assuntos
Hemeproteínas , Synechocystis , Heme , Zinco , Histidina , Hemeproteínas/genética , Synechocystis/genética , Carbono , Ferro
3.
Metallomics ; 16(3)2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439674

RESUMO

Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the green alga Chlamydomonas reinhardtii, Cu import is dependent on a transcription factor, Copper Response Regulator 1 (CRR1), responsible for activating genes in Cu-deficient cells. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family (CTR1 and CTR2) and a related soluble protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1, but not CTR2, recapitulates the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high-affinity Cu(I) uptake. On the other hand, the overaccumulation of Cu(I) (20 times the quota) in zinc (Zn) deficiency depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and consistent with the lower substrate affinity of CTR2. ONE SENTENCE SUMMARY: Regulation of Cu uptake and sequestration by members of the CTR family of proteins in Chlamydomonas.


Assuntos
Chlamydomonas , Cobre , Cobre/metabolismo , Chlamydomonas/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Regulação da Expressão Gênica
5.
Front Plant Sci ; 14: 1237722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965006

RESUMO

Metal homeostasis has evolved to tightly modulate the availability of metals within the cell, avoiding cytotoxic interactions due to excess and protein inactivity due to deficiency. Even in the presence of homeostatic processes, however, low bioavailability of these essential metal nutrients in soils can negatively impact crop health and yield. While research has largely focused on how plants assimilate metals, acclimation to metal-limited environments requires a suite of strategies that are not necessarily involved in metal transport across membranes. The identification of these mechanisms provides a new opportunity to improve metal-use efficiency and develop plant foodstuffs with increased concentrations of bioavailable metal nutrients. Here, we investigate the function of two distinct subfamilies of the nucleotide-dependent metallochaperones (NMCs), named ZNG1 and ZNG2, that are found in plants, using Arabidopsis thaliana as a reference organism. AtZNG1 (AT1G26520) is an ortholog of human and fungal ZNG1, and like its previously characterized eukaryotic relatives, localizes to the cytosol and physically interacts with methionine aminopeptidase type I (AtMAP1A). Analysis of AtZNG1, AtMAP1A, AtMAP2A, and AtMAP2B transgenic mutants are consistent with the role of Arabidopsis ZNG1 as a Zn transferase for AtMAP1A, as previously described in yeast and zebrafish. Structural modeling reveals a flexible cysteine-rich loop that we hypothesize enables direct transfer of Zn from AtZNG1 to AtMAP1A during GTP hydrolysis. Based on proteomics and transcriptomics, loss of this ancient and conserved mechanism has pleiotropic consequences impacting the expression of hundreds of genes, including those involved in photosynthesis and vesicle transport. Members of the plant-specific family of NMCs, ZNG2A1 (AT1G80480) and ZNG2A2 (AT1G15730), are also required during Zn deficiency, but their target protein(s) remain to be discovered. RNA-seq analyses reveal wide-ranging impacts across the cell when the genes encoding these plastid-localized NMCs are disrupted.

6.
PLoS One ; 18(10): e0293015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862358

RESUMO

Heme-copper oxygen reductases are membrane-bound oligomeric complexes that are integral to prokaryotic and eukaryotic aerobic respiratory chains. Biogenesis of these enzymes is complex and requires coordinated assembly of the subunits and their cofactors. Some of the components are involved in the acquisition and integration of different heme and copper (Cu) cofactors into these terminal oxygen reductases. As such, MFS-type transporters of the CalT family (e.g., CcoA) are required for Cu import and heme-CuB center biogenesis of the cbb3-type cytochrome c oxidases (cbb3-Cox). However, functionally homologous Cu transporters for similar heme-Cu containing bo3-type quinol oxidases (bo3-Qox) are unknown. Despite the occurrence of multiple MFS-type transporters, orthologs of CcoA are absent in bacteria like Escherichia coli that contain bo3-Qox. In this work, we identified a subset of uncharacterized MFS transporters, based on the presence of putative metal-binding residues, as likely candidates for the missing Cu transporter. Using a genetic approach, we tested whether these transporters are involved in the biogenesis of E. coli bo3-Qox. When respiratory growth is dependent on bo3-Qox, because of deletion of the bd-type Qox enzymes, three candidate genes, yhjE, ydiM, and yfcJ, were found to be critical for E. coli growth. Radioactive metal uptake assays showed that ΔydiM has a slower 64Cu uptake, whereas ΔyhjE accumulates reduced 55Fe in the cell, while no similar uptake defect is associated with ΔycfJ. Phylogenomic analyses suggest plausible roles for the YhjE, YdiM, and YfcJ transporters, and overall findings illustrate the diverse roles that the MFS-type transporters play in cellular metal homeostasis and production of active heme-Cu oxygen reductases.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Radioisótopos de Cobre , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cobre/metabolismo , Oxirredutases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Escherichia coli/genética , Heme , Oxigênio , Citocromos , Oxirredução
7.
bioRxiv ; 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37905083

RESUMO

Successful acclimation to copper (Cu) deficiency involves a fine balance between Cu import and export. In the unicellular green alga Chlamydomonas reinhardtii , Cu import is dependent on C opper R esponse R egulator 1 (CRR1), the master regulator of Cu homeostasis. Among CRR1 target genes are two Cu transporters belonging to the CTR/COPT gene family ( CTR1 and CTR2 ) and a related soluble cysteine-rich protein (CTR3). The ancestor of these green algal proteins was likely acquired from an ancient chytrid and contained conserved cysteine-rich domains (named the CTR-associated domains, CTRA) that are predicted to be involved in Cu acquisition. We show by reverse genetics that Chlamydomonas CTR1 and CTR2 are canonical Cu importers albeit with distinct affinities, while loss of CTR3 did not result in an observable phenotype under the conditions tested. Mutation of CTR1 , but not CTR2 , recapitulate the poor growth of crr1 in Cu-deficient medium, consistent with a dominant role for CTR1 in high affinity Cu(I) uptake. Notably, the over-accumulation of Cu(I) in Zinc (Zn)-deficiency (20 times the quota) depends on CRR1 and both CTR1 and CTR2. CRR1-dependent activation of CTR gene expression needed for Cu over-accumulation can be bypassed by the provision of excess Cu in the growth medium. Over-accumulated Cu is sequestered into the acidocalcisome but can become remobilized by restoring Zn nutrition. This mobilization is also CRR1-dependent, and requires activation of CTR2 expression, again distinguishing CTR2 from CTR1 and is consistent with the lower substrate affinity of CTR2.

8.
Proc Natl Acad Sci U S A ; 120(30): e2305495120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459532

RESUMO

Marine algae are responsible for half of the world's primary productivity, but this critical carbon sink is often constrained by insufficient iron. One species of marine algae, Dunaliella tertiolecta, is remarkable for its ability to maintain photosynthesis and thrive in low-iron environments. A related species, Dunaliella salina Bardawil, shares this attribute but is an extremophile found in hypersaline environments. To elucidate how algae manage their iron requirements, we produced high-quality genome assemblies and transcriptomes for both species to serve as a foundation for a comparative multiomics analysis. We identified a host of iron-uptake proteins in both species, including a massive expansion of transferrins and a unique family of siderophore-iron-uptake proteins. Complementing these multiple iron-uptake routes, ferredoxin functions as a large iron reservoir that can be released by induction of flavodoxin. Proteomic analysis revealed reduced investment in the photosynthetic apparatus coupled with remodeling of antenna proteins by dramatic iron-deficiency induction of TIDI1, which is closely related but identifiably distinct from the chlorophyll binding protein, LHCA3. These combinatorial iron scavenging and sparing strategies make Dunaliella unique among photosynthetic organisms.


Assuntos
Clorofíceas , Extremófilos , Ferro/metabolismo , Multiômica , Proteômica , Fotossíntese , Proteínas/metabolismo
9.
mBio ; 14(1): e0304022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36598193

RESUMO

Metabolic sensing is a crucial prerequisite for cells to adjust their physiology to rapidly changing environments. In bacteria, the response to intra- and extracellular ligands is primarily controlled by transcriptional regulators, which activate or repress gene expression to ensure metabolic acclimation. Translational control, such as ribosomal stalling, can also contribute to cellular acclimation and has been shown to mediate responses to changing intracellular molecules. In the current study, we demonstrate that the cotranslational export of the Rhodobacter capsulatus protein CutF regulates the translation of the downstream cutO-encoded multicopper oxidase CutO in response to extracellular copper (Cu). Our data show that CutF, acting as a Cu sensor, is cotranslationally exported by the signal recognition particle pathway. The binding of Cu to the periplasmically exposed Cu-binding motif of CutF delays its cotranslational export via its C-terminal ribosome stalling-like motif. This allows for the unfolding of an mRNA stem-loop sequence that shields the ribosome-binding site of cutO, which favors its subsequent translation. Bioinformatic analyses reveal that CutF-like proteins are widely distributed in bacteria and are often located upstream of genes involved in transition metal homeostasis. Our overall findings illustrate a highly conserved control mechanism using the cotranslational export of a protein acting as a sensor to integrate the changing availability of extracellular nutrients into metabolic acclimation. IMPORTANCE Metabolite sensing is a fundamental biological process, and the perception of dynamic changes in the extracellular environment is of paramount importance for the survival of organisms. Bacteria usually adjust their metabolisms to changing environments via transcriptional regulation. Here, using Rhodobacter capsulatus, we describe an alternative translational mechanism that controls the bacterial response to the presence of copper, a toxic micronutrient. This mechanism involves a cotranslationally secreted protein that, in the presence of copper, undergoes a process resembling ribosomal stalling. This allows for the unfolding of a downstream mRNA stem-loop and enables the translation of the adjacent Cu-detoxifying multicopper oxidase. Bioinformatic analyses reveal that such proteins are widespread, suggesting that metabolic sensing using ribosome-arrested nascent secreted proteins acting as sensors may be a common strategy for the integration of environmental signals into metabolic adaptations.


Assuntos
Cobre , Oxirredutases , Cobre/metabolismo , Oxirredutases/metabolismo , Sítios de Ligação , Ribossomos/metabolismo , Regulação da Expressão Gênica
10.
Plant Cell ; 35(2): 644-672, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36562730

RESUMO

Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles. We corrected major misassemblies in previous versions and validated our assemblies via linkage analyses. Contiguity increased over ten-fold and >80% of filled gaps are within genes. We used Iso-Seq and deep RNA-seq datasets to improve structural annotations, and updated gene symbols and textual annotation of functionally characterized genes via extensive manual curation. We discovered that the cell wall-less classical reference strain CC-503 exhibits genomic instability potentially caused by deletion of the helicase RECQ3, with major structural mutations identified that affect >100 genes. We therefore present the CC-4532 assembly as the primary reference, although this strain also carries unique structural mutations and is experiencing rapid proliferation of a Gypsy retrotransposon. We expect all laboratory strains to harbor gene-disrupting mutations, which should be considered when interpreting and comparing experimental results. Collectively, the resources presented here herald a new era of Chlamydomonas genomics and will provide the foundation for continued research in this important reference organism.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/genética , Genômica/métodos , Mutação/genética , Reprodução , Chlamydomonas reinhardtii/genética
11.
Metallomics ; 14(9)2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36066904

RESUMO

Queuosine (Q) is a conserved hypermodification of the wobble base of tRNA containing GUN anticodons but the physiological consequences of Q deficiency are poorly understood in bacteria. This work combines transcriptomic, proteomic and physiological studies to characterize a Q-deficient Escherichia coli K12 MG1655 mutant. The absence of Q led to an increased resistance to nickel and cobalt, and to an increased sensitivity to cadmium, compared to the wild-type (WT) strain. Transcriptomic analysis of the WT and Q-deficient strains, grown in the presence and absence of nickel, revealed that the nickel transporter genes (nikABCDE) are downregulated in the Q- mutant, even when nickel is not added. This mutant is therefore primed to resist to high nickel levels. Downstream analysis of the transcriptomic data suggested that the absence of Q triggers an atypical oxidative stress response, confirmed by the detection of slightly elevated reactive oxygen species (ROS) levels in the mutant, increased sensitivity to hydrogen peroxide and paraquat, and a subtle growth phenotype in a strain prone to accumulation of ROS.


Assuntos
Escherichia coli K12 , Nucleosídeo Q , Anticódon , Cádmio , Cobalto , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Homeostase , Peróxido de Hidrogênio , Níquel , Nucleosídeo Q/metabolismo , Estresse Oxidativo , Paraquat , Fenótipo , Proteômica , RNA de Transferência/genética , RNA de Transferência/metabolismo , Espécies Reativas de Oxigênio
12.
Database (Oxford) ; 20222022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961013

RESUMO

Over the last 25 years, biology has entered the genomic era and is becoming a science of 'big data'. Most interpretations of genomic analyses rely on accurate functional annotations of the proteins encoded by more than 500 000 genomes sequenced to date. By different estimates, only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4 February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.


Assuntos
Genômica , Proteínas , Sequência de Bases , Biologia Computacional , Genoma , Anotação de Sequência Molecular
13.
Nat Ecol Evol ; 6(7): 851-852, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654897

Assuntos
Eucariotos , Zinco
14.
Cell Rep ; 39(7): 110834, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584675

RESUMO

The evolution of zinc (Zn) as a protein cofactor altered the functional landscape of biology, but dependency on Zn also created an Achilles' heel, necessitating adaptive mechanisms to ensure Zn availability to proteins. A debated strategy is whether metallochaperones exist to prioritize essential Zn-dependent proteins. Here, we present evidence for a conserved family of putative metal transferases in human and fungi, which interact with Zn-dependent methionine aminopeptidase type I (MetAP1/Map1p/Fma1). Deletion of the putative metal transferase in Saccharomyces cerevisiae (ZNG1; formerly YNR029c) leads to defective Map1p function and a Zn-deficiency growth defect. In vitro, Zng1p can transfer Zn2+ or Co2+ to apo-Map1p, but unlike characterized copper chaperones, transfer is dependent on GTP hydrolysis. Proteomics reveal mis-regulation of the Zap1p transcription factor regulon because of loss of ZNG1 and Map1p activity, suggesting that Zng1p is required to avoid a compounding effect of Map1p dysfunction on survival during Zn limitation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Transferases , Zinco , Humanos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Guanosina Trifosfato , Metais/metabolismo , Metionina , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transferases/fisiologia , Zinco/metabolismo
15.
Annu Rev Plant Biol ; 73: 123-148, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35130446

RESUMO

GATA factors are evolutionarily conserved transcription factors that are found in animals, fungi, and plants. Compared to that of animals, the size of the plant GATA family is increased. In angiosperms, four main GATA classes and seven structural subfamilies can be defined. In recent years, knowledge about the biological role and regulation of plant GATAs has substantially improved. Individual family members have been implicated in the regulation of photomorphogenic growth, chlorophyll biosynthesis, chloroplast development, photosynthesis, and stomata formation, as well as root, leaf, and flower development. In this review, we summarize the current knowledge of plant GATA factors. Using phylogenomic analysis, we trace the evolutionary origin of the GATA classes in the green lineage and examine their relationship to animal and fungal GATAs. Finally, we speculate about a possible conservation of GATA-regulated functions across the animal, fungal, and plant kingdoms.


Assuntos
Fatores de Transcrição GATA , Fatores de Transcrição , Animais , Biologia , Evolução Molecular , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Folhas de Planta/metabolismo
16.
Front Microbiol ; 12: 720644, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566924

RESUMO

Copper (Cu) is an essential cofactor required for redox enzymes in all domains of life. Because of its toxicity, tightly controlled mechanisms ensure Cu delivery for cuproenzyme biogenesis and simultaneously protect cells against toxic Cu. Many Gram-negative bacteria contain extracytoplasmic multicopper oxidases (MCOs), which are involved in periplasmic Cu detoxification. MCOs are unique cuproenzymes because their catalytic center contains multiple Cu atoms, which are required for the oxidation of Cu1+ to the less toxic Cu2+. Hence, Cu is both substrate and essential cofactor of MCOs. Here, we investigated the maturation of Rhodobacter capsulatus MCO CutO and its role in periplasmic Cu detoxification. A survey of CutO activity of R. capsulatus mutants with known defects in Cu homeostasis and in the maturation of the cuproprotein cbb 3-type cytochrome oxidase (cbb 3-Cox) was performed. This revealed that CutO activity is largely independent of the Cu-delivery pathway for cbb 3-Cox biogenesis, except for the cupric reductase CcoG, which is required for full CutO activity. The most pronounced decrease of CutO activity was observed with strains lacking the cytoplasmic Cu chaperone CopZ, or the Cu-exporting ATPase CopA, indicating that CutO maturation is linked to the CopZ-CopA mediated Cu-detoxification pathway. Our data demonstrate that CutO is important for cellular Cu resistance under both aerobic and anaerobic growth conditions. CutO is encoded in the cutFOG operon, but only CutF, and not CutG, is essential for CutO activity. No CutO activity is detectable when cutF or its putative Cu-binding motif are mutated, suggesting that the cutF product serves as a Cu-binding component required for active CutO production. Bioinformatic analyses of CutF-like proteins support their widespread roles as putative Cu-binding proteins for several Cu-relay pathways. Our overall findings show that the cytoplasmic CopZ-CopA dependent Cu detoxification pathway contributes to providing Cu to CutO maturation, a process that strictly relies on cutF.

17.
Commun Biol ; 4(1): 962, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385583

RESUMO

Progress in sequencing, microfluidics, and analysis strategies has revolutionized the granularity at which multicellular organisms can be studied. In particular, single-cell transcriptomics has led to fundamental new insights into animal biology, such as the discovery of new cell types and cell type-specific disease processes. However, the application of single-cell approaches to plants, fungi, algae, or bacteria (environmental organisms) has been far more limited, largely due to the challenges posed by polysaccharide walls surrounding these species' cells. In this perspective, we discuss opportunities afforded by single-cell technologies for energy and environmental science and grand challenges that must be tackled to apply these approaches to plants, fungi and algae. We highlight the need to develop better and more comprehensive single-cell technologies, analysis and visualization tools, and tissue preparation methods. We advocate for the creation of a centralized, open-access database to house plant single-cell data. Finally, we consider how such efforts should balance the need for deep characterization of select model species while still capturing the diversity in the plant kingdom. Investments into the development of methods, their application to relevant species, and the creation of resources to support data dissemination will enable groundbreaking insights to propel energy and environmental science forward.


Assuntos
Conservação de Recursos Energéticos/métodos , Bases de Dados como Assunto , Ciência Ambiental/métodos , Plantas , Análise de Célula Única/métodos , Tecnologia/instrumentação
19.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33579822

RESUMO

Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacement of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage.


Assuntos
Clorófitas/genética , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fases de Leitura Aberta , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , Transcrição Gênica
20.
Mol Biol Evol ; 38(2): 650-662, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32886760

RESUMO

Diverging from the classic paradigm of random gene order in eukaryotes, gene proximity can be leveraged to systematically identify functionally related gene neighborhoods in eukaryotes, utilizing techniques pioneered in bacteria. Current methods of identifying gene neighborhoods typically rely on sequence similarity to characterized gene products. However, this approach is not robust for nonmodel organisms like algae, which are evolutionarily distant from well-characterized model organisms. Here, we utilize a comparative genomic approach to identify evolutionarily conserved proximal orthologous gene pairs conserved across at least two taxonomic classes of green algae. A total of 317 gene neighborhoods were identified. In some cases, gene proximity appears to have been conserved since before the streptophyte-chlorophyte split, 1,000 Ma. Using functional inferences derived from reconstructed evolutionary relationships, we identified several novel functional clusters. A putative mycosporine-like amino acid, "sunscreen," neighborhood contains genes similar to either vertebrate or cyanobacterial pathways, suggesting a novel mosaic biosynthetic pathway in green algae. One of two putative arsenic-detoxification neighborhoods includes an organoarsenical transporter (ArsJ), a glyceraldehyde 3-phosphate dehydrogenase-like gene, homologs of which are involved in arsenic detoxification in bacteria, and a novel algal-specific phosphoglycerate kinase-like gene. Mutants of the ArsJ-like transporter and phosphoglycerate kinase-like genes in Chlamydomonas reinhardtii were found to be sensitive to arsenate, providing experimental support for the role of these identified neighbors in resistance to arsenate. Potential evolutionary origins of neighborhoods are discussed, and updated annotations for formerly poorly annotated genes are presented, highlighting the potential of this strategy for functional annotation.


Assuntos
Clorófitas/genética , Genoma , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA