Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906993

RESUMO

Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.

2.
Nano Lett ; 23(10): 4399-4405, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37154560

RESUMO

Transition metal dichalcogenide heterostructures provide a versatile platform to explore electronic and excitonic phases. As the excitation density exceeds the critical Mott density, interlayer excitons are ionized into an electron-hole plasma phase. The transport of the highly non-equilibrium plasma is relevant for high-power optoelectronic devices but has not been carefully investigated previously. Here, we employ spatially resolved pump-probe microscopy to investigate the spatial-temporal dynamics of interlayer excitons and hot-plasma phase in a MoSe2/WSe2 twisted bilayer. At the excitation density of ∼1014 cm-2, well exceeding the Mott density, we find a surprisingly rapid initial expansion of hot plasma to a few microns away from the excitation source within ∼0.2 ps. Microscopic theory reveals that this rapid expansion is mainly driven by Fermi pressure and Coulomb repulsion, while the hot carrier effect has only a minor effect in the plasma phase.

3.
Angew Chem Int Ed Engl ; 62(15): e202301049, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36806415

RESUMO

Chalcogenide perovskites have garnered interest for applications in semiconductor devices due to their excellent predicted optoelectronic properties and stability. However, high synthesis temperatures have historically made these materials incompatible with the creation of photovoltaic devices. Here, we demonstrate the solution processed synthesis of luminescent BaZrS3 and BaHfS3 chalcogenide perovskite films using single-phase molecular precursors at sulfurization temperatures of 575 °C and sulfurization times as short as one hour. These molecular precursor inks were synthesized using known carbon disulfide insertion chemistry to create Group 4 metal dithiocarbamates, and this chemistry was extended to create species, such as barium dithiocarboxylates, that have never been reported before. These findings, with added future research, have the potential to yield fully solution processed thin films of chalcogenide perovskites for various optoelectronic applications.

4.
Science ; 378(6625): 1235-1239, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520893

RESUMO

Electronic and optical excitations in two-dimensional systems are distinctly sensitive to the presence of a moiré superlattice. We used cryogenic transmission electron microscopy and spectroscopy to simultaneously image the structural reconstruction and associated localization of the lowest-energy intralayer exciton in a rotationally aligned WS2-WSe2 moiré superlattice. In conjunction with optical spectroscopy and ab initio calculations, we determined that the exciton center-of-mass wave function is confined to a radius of approximately 2 nanometers around the highest-energy stacking site in the moiré unit cell. Our results provide direct evidence that atomic reconstructions lead to the strongly confining moiré potentials and that engineering strain at the nanoscale will enable new types of excitonic lattices.

5.
Nano Lett ; 22(19): 7811-7818, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36130299

RESUMO

Achieving superradiance in solids is challenging due to fast dephasing processes from inherent disorder and thermal fluctuations. Perovskite quantum dots (QDs) are an exciting class of exciton emitters with large oscillator strength and high quantum efficiency, making them promising for solid-state superradiance. However, a thorough understanding of the competition between coherence and dephasing from phonon scattering and energetic disorder is currently unavailable. Here, we present an investigation of exciton coherence in perovskite QD solids using temperature-dependent photoluminescence line width and lifetime measurements. Our results demonstrate that excitons are coherently delocalized over 3 QDs at 11 K in superlattices leading to superradiant emission. Scattering from optical phonons leads to the loss of coherence and exciton localization to a single QD at temperatures above 100 K. At low temperatures, static disorder and defects limit exciton coherence. These results highlight the promise and challenge in achieving coherence in perovskite QD solids.

6.
Nanoscale ; 14(20): 7569-7578, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35502865

RESUMO

Mapping the optical response of buried interfaces with nanoscale spatial resolution is crucial in several systems where an active component is embedded within a buffer layer for structural or functional reasons. Here, we demonstrate that cathodoluminescence microscopy is not only an ideal tool for visualizing buried interfaces, but can be optimized through heterostructure design. We focus on the prototypical system of monolayers of semiconducting transition metal dichalcogenide sandwiched between hexagonal boron nitride layers. We leverage the encapsulating layers to tune the nanoscale spatial resolution achievable in cathodoluminescence mapping while also controlling the brightness of the emission. Thicker encapsulation layers result in a brighter emission while thinner ones enhance the spatial resolution at the expense of the signal intensity. We find that a favorable trade-off between brightness and resolution is achievable up to about ∼100 nm of total encapsulation. Beyond this value, the brightness gain is marginal, while the spatial resolution enters a regime that is achievable by diffraction-limited optical microscopy. By preparing samples of varying encapsulation thickness, we are able to determine a surprisingly isotropic exciton diffusion length of >200 nm within the hexagonal boron nitride which is the dominant factor that determines spatial resolution. We further demonstrate that we can overcome the exciton diffusion-limited spatial resolution by using spectrally distinct signals, which is the case for nanoscale inhomogeneities within monolayer transition metal dichalcogenides.

7.
Nat Mater ; 19(6): 617-623, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32393806

RESUMO

The nanoscale periodic potentials introduced by moiré patterns in semiconducting van der Waals heterostructures have emerged as a platform for designing exciton superlattices. However, our understanding of the motion of excitons in moiré potentials is still limited. Here we investigated interlayer exciton dynamics and transport in WS2-WSe2 heterobilayers in time, space and momentum domains using transient absorption microscopy combined with first-principles calculations. We found that the exciton motion is modulated by twist-angle-dependent moiré potentials around 100 meV and deviates from normal diffusion due to the interplay between the moiré potentials and strong exciton-exciton interactions. Our experimental results verified the theoretical prediction of energetically favourable K-Q interlayer excitons and showed exciton-population dynamics that are controlled by the twist-angle-dependent energy difference between the K-Q and K-K excitons. These results form a basis to investigate exciton and spin transport in van der Waals heterostructures, with implications for the design of quantum communication devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA