Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Aerosol Air Qual Res ; 24(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38618024

RESUMO

Portable air cleaners (PACs) equipped with HEPA filters are gaining attention as cost-effective means of decreasing indoor particulate matter (PM) air pollutants and airborne viruses. However, the performance of PACs in naturalistic settings and spaces beyond the room containing the PAC is not well characterized. We conducted a single-blinded randomized cross-over interventional study between November 2020 and May 2021 in the homes of adults who tested positive for COVID-19. The intervention was air filtration with PAC operated with the HEPA filter set installed ("filter" condition) versus removed ("sham" condition, i.e., control). Sampling was performed in 29 homes for two consecutive 24-hour periods in the primary room (containing the PAC) and a secondary room. PAC effectiveness, calculated as reductions in overall mean PM2.5 and PM10 concentrations during the filter condition, were for the primary rooms 78.8% and 63.9% (n = 23), respectively, and for the secondary rooms 57.9% and 60.4% (n = 22), respectively. When a central air handler (CAH) was reported to be in use, filter-associated reductions of PM were statistically significant during the day (06:00-22:00) and night (22:01-05:59) in the primary rooms but only during the day in the secondary rooms. Our study adds to the literature evaluating the real-world effects of PACs on a secondary room and considering the impact of central air systems on PAC performance.

2.
Indoor Air ; 32(4): e13029, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35481935

RESUMO

Individuals with COVID-19 who do not require hospitalization are instructed to self-isolate in their residences. Due to high secondary infection rates in household members, there is a need to understand airborne transmission of SARS-CoV-2 within residences. We report the first naturalistic intervention study suggesting a reduction of such transmission risk using portable air cleaners (PACs) with HEPA filters. Seventeen individuals with newly diagnosed COVID-19 infection completed this single-blind, crossover, randomized study. Total and size-fractionated aerosol samples were collected simultaneously in the self-isolation room with the PAC (primary) and another room (secondary) for two consecutive 24-h periods, one period with HEPA filtration and the other with the filter removed (sham). Seven out of sixteen (44%) air samples in primary rooms were positive for SARS-CoV-2 RNA during the sham period. With the PAC operated at its lowest setting (clean air delivery rate [CADR] = 263 cfm) to minimize noise, positive aerosol samples decreased to four out of sixteen residences (25%; p = 0.229). A slight decrease in positive aerosol samples was also observed in the secondary room. As the world confronts both new variants and limited vaccination rates, our study supports this practical intervention to reduce the presence of viral aerosols in a real-world setting.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Aerossóis , Poluição do Ar em Ambientes Fechados/análise , Humanos , RNA Viral , SARS-CoV-2 , Método Simples-Cego
4.
Int J Occup Environ Health ; 23(4): 291-298, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29877780

RESUMO

Fragrance ingredients are commonly added to many personal care products to provide a pleasant scent, including those intended for babies. While fragrance chemicals have a long history of safe use, at sufficiently high concentrations some may act as respiratory irritants or sensitizers. Little data have been reported on the inhalation exposures to fragrance compounds to infants and toddlers during bathing and lotion applications. This study demonstrates an in vitro method for measuring breathing zone air concentrations of fragrances from bath products and lotions. It employed simulated infant bathing and lotion application events and a robot to mimic a toddler's movement within a bathroom setting. The air concentrations in an infant's breathing zone were between <1 and 5 µg/m3 for each of seven common fragrance ingredients, while that in the breathing zone of toddlers in the bathroom was ≤ 1µg/m3. The air concentrations from the bathing additive were linearly related to their Henry's law constants and from the lotion inversely related to their octanol-air coefficients. The proposed approach can help refine risk estimates from inhalation exposure to fragrances used in baby products and guide future risk assessments of new products' safety for their use in baby bath products.


Assuntos
Produtos Domésticos/análise , Exposição por Inalação/análise , Odorantes/análise , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA