Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Arch Pathol Lab Med ; 144(6): 679-685, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32459534

RESUMO

CONTEXT.­: Within Medicare's Quality Payment Program, and more specifically the Merit-based Incentive Payment System, pathologists stand to potentially lose or gain approximately $2 billion during the initial 7 years of the program. If you or your group provides services to Medicare beneficiaries, you will likely need to comply with the program. OBJECTIVE.­: To avoid potential reductions in Medicare reimbursement, pathologists need to understand the requirements of these new payment programs. DATA SOURCES.­: Each year the Centers for Medicare & Medicaid Services publish a Final Rule detailing the program requirements and updates. 2020 marks the fourth reporting year for the Merit-based Incentive Payment System. Performance this year will impact 2022 Medicare Part B distributions by up to ±9%. CONCLUSIONS.­: By staying up to date with the ever-evolving Merit-based Incentive Payment System requirements, pathologists will be better equipped to successfully comply with this relatively new payment system, reduce the burden of participating, understand the reporting differences of the various performance categories, and thereby be able to maximize their scoring and incentive potential.


Assuntos
Medicare , Patologistas , Patologia , Qualidade da Assistência à Saúde/normas , Reembolso de Incentivo , Humanos , Estados Unidos
3.
J Mol Diagn ; 18(5): 697-706, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27471182

RESUMO

Next-generation sequencing has evolved technically and economically into the method of choice for interrogating the genome in cancer and inherited disorders. The introduction of procedural code sets for whole-exome and genome sequencing is a milestone toward financially sustainable clinical implementation; however, achieving reimbursement is currently a major challenge. As part of a prospective quality-improvement initiative to implement the new code sets, we adopted Agile, a development methodology originally devised in software development. We implemented eight functionally distinct modules (request review, cost estimation, preauthorization, accessioning, prebilling, testing, reporting, and reimbursement consultation) and obtained feedback via an anonymous survey. We managed 50 clinical requests (January to June 2015). The fraction of pursued-to-requested cases (n = 15/50; utilization management fraction, 0.3) aimed for a high rate of preauthorizations. In 13 of 15 patients the insurance plan required preauthorization, which we obtained in 70% and ultimately achieved reimbursement in 50%. Interoperability enabled assessment of 12 different combinations of modules that underline the importance of an adaptive workflow and policy tailoring to achieve higher yields of reimbursement. The survey confirmed a positive attitude toward self-organizing teams. We acknowledge the individuals and their interactions and termed the infrastructure: human pipeline. Nontechnical barriers currently are limiting the scope and availability of clinical genomic sequencing. The presented human pipeline is one approach toward long-term financial sustainability of clinical genomics.


Assuntos
Atenção à Saúde , Genômica , Informática Médica/métodos , Software , Atenção à Saúde/economia , Atenção à Saúde/métodos , Atenção à Saúde/organização & administração , Exoma , Genômica/economia , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Informática Médica/economia , Encaminhamento e Consulta , Mecanismo de Reembolso , Pesquisa , Inquéritos e Questionários , Fluxo de Trabalho , Recursos Humanos
4.
Genet Med ; 16(12): 954-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25010053

RESUMO

PURPOSE: The practice of "genomic" (or "personalized") medicine requires the availability of appropriate diagnostic testing. Our study objective was to identify the reasons for health systems to bring next-generation sequencing into their clinical laboratories and to understand the process by which such decisions were made. Such information may be of value to other health systems seeking to provide next-generation sequencing testing to their patient populations. METHODS: A standardized open-ended interview was conducted with the laboratory medical directors and/or department of pathology chairs of 13 different academic institutions in 10 different states. RESULTS: Genomic testing for cancer dominated the institutional decision making, with three primary reasons: more effective delivery of cancer care, the perceived need for institutional leadership in the field of genomics, and the premise that genomics will eventually be cost-effective. Barriers to implementation included implementation cost; the time and effort needed to maintain this newer testing; challenges in interpreting genetic variants; establishing the bioinformatics infrastructure; and curating data from medical, ethical, and legal standpoints. Ultimate success depended on alignment with institutional strengths and priorities and working closely with institutional clinical programs. CONCLUSION: These early adopters uniformly viewed genomic analysis as an imperative for developing their expertise in the implementation and practice of genomic medicine.


Assuntos
Testes Genéticos/métodos , Genômica , Neoplasias/diagnóstico , Tomada de Decisões , Difusão de Inovações , Detecção Precoce de Câncer/economia , Detecção Precoce de Câncer/métodos , Testes Genéticos/economia , Genética/tendências , Humanos , Medicina de Precisão/métodos , Sociedades Médicas , Inquéritos e Questionários , Estados Unidos
5.
J Pathol Inform ; 3: 31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23024890

RESUMO

BACKGROUND: In 2007, our healthcare system established a clinical fellowship program in Pathology Informatics. In 2010 a core didactic course was implemented to supplement the fellowship research and operational rotations. In 2011, the course was enhanced by a formal, structured core curriculum and reading list. We present and discuss our rationale and development process for the Core Curriculum and the role it plays in our Pathology Informatics Fellowship Training Program. MATERIALS AND METHODS: The Core Curriculum for Pathology Informatics was developed, and is maintained, through the combined efforts of our Pathology Informatics Fellows and Faculty. The curriculum was created with a three-tiered structure, consisting of divisions, topics, and subtopics. Primary (required) and suggested readings were selected for each subtopic in the curriculum and incorporated into a curated reading list, which is reviewed and maintained on a regular basis. RESULTS: Our Core Curriculum is composed of four major divisions, 22 topics, and 92 subtopics that cover the wide breadth of Pathology Informatics. The four major divisions include: (1) Information Fundamentals, (2) Information Systems, (3) Workflow and Process, and (4) Governance and Management. A detailed, comprehensive reading list for the curriculum is presented in the Appendix to the manuscript and contains 570 total readings (current as of March 2012). DISCUSSION: The adoption of a formal, core curriculum in a Pathology Informatics fellowship has significant impacts on both fellowship training and the general field of Pathology Informatics itself. For a fellowship, a core curriculum defines a basic, common scope of knowledge that the fellowship expects all of its graduates will know, while at the same time enhancing and broadening the traditional fellowship experience of research and operational rotations. For the field of Pathology Informatics itself, a core curriculum defines to the outside world, including departments, companies, and health systems considering hiring a pathology informatician, the core knowledge set expected of a person trained in the field and, more fundamentally, it helps to define the scope of the field within Pathology and healthcare in general.

6.
J Pathol Inform ; 3: 11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22530179

RESUMO

BACKGROUND: In 2007, our healthcare system established a clinical fellowship program in pathology informatics. In 2011, the program benchmarked its structure and operations against a 2009 white paper "Program requirements for fellowship education in the subspecialty of clinical informatics", endorsed by the Board of the American Medical Informatics Association (AMIA) that described a proposal for a general clinical informatics fellowship program. METHODS: A group of program faculty members and fellows compared each of the proposed requirements in the white paper with the fellowship program's written charter and operations. The majority of white paper proposals aligned closely with the rules and activities in our program and comparison was straightforward. In some proposals, however, differences in terminology, approach, and philosophy made comparison less direct, and in those cases, the thinking of the group was recorded. After the initial evaluation, the remainder of the faculty reviewed the results and any disagreements were resolved. RESULTS: The most important finding of the study was how closely the white paper proposals for a general clinical informatics fellowship program aligned with the reality of our existing pathology informatics fellowship. The program charter and operations of the program were judged to be concordant with the great majority of specific white paper proposals. However, there were some areas of discrepancy and the reasons for the discrepancies are discussed in the manuscript. CONCLUSIONS: After the comparison, we conclude that the existing pathology informatics fellowship could easily meet all substantive proposals put forth in the 2009 clinical informatics program requirements white paper. There was also agreement on a number of philosophical issues, such as the advantages of multiple fellows, the need for core knowledge and skill sets, and the need to maintain clinical skills during informatics training. However, there were other issues, such as a requirement for a 2-year fellowship and for informatics fellowships to be done after primary board certification, that pathology should consider carefully as it moves toward a subspecialty status and board certification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA