Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Vaccines ; 9(1): 32, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360793

RESUMO

Zika virus (ZIKV) is a significant threat to pregnant women and their fetuses as it can cause severe birth defects and congenital neurodevelopmental disorders, referred to as congenital Zika syndrome (CZS). Thus, a safe and effective ZIKV vaccine for pregnant women to prevent in utero ZIKV infection is of utmost importance. Murine models of ZIKV infection are limited by the fact that immunocompetent mice are resistant to ZIKV infection. As such, interferon-deficient mice have been used in some preclinical studies to test the efficacy of ZIKV vaccine candidates against lethal virus challenge. However, interferon-deficient mouse models have limitations in assessing the immunogenicity of vaccines, necessitating the use of immunocompetent mouse pregnancy models. Using the human stat2 knock-in (hSTAT2KI) mouse pregnancy model, we show that vaccination with a purified formalin-inactivated Zika virus (ZPIV) vaccine prior to pregnancy successfully prevented vertical transmission. In addition, maternal immunity protected offspring against postnatal challenge for up to 28 days. Furthermore, passive transfer of human IgG purified from hyper-immune sera of ZPIV vaccinees prevented maternal and fetal ZIKV infection, providing strong evidence that the neutralizing antibody response may serve as a meaningful correlate of protection.

2.
NPJ Vaccines ; 9(1): 35, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368443

RESUMO

Zika virus (ZIKV) infection during pregnancy poses significant threats to maternal and fetal health, leading to intrauterine fetal demise and severe developmental malformations that constitute congenital Zika syndrome (CZS). As such, the development of a safe and effective ZIKV vaccine is a critical public health priority. However, the safety and efficacy of such a vaccine during pregnancy remain uncertain. Historically, the conduct of clinical trials in pregnant women has been challenging. Therefore, clinically relevant animal pregnancy models are in high demand for testing vaccine efficacy. We previously reported that a marmoset pregnancy model of ZIKV infection consistently demonstrated vertical transmission from mother to fetus during pregnancy. Using this marmoset model, we also showed that vertical transmission could be prevented by pre-pregnancy vaccination with Zika purified inactivated virus (ZPIV) vaccine. Here, we further examined the efficacy of ZPIV vaccination during pregnancy. Vaccination during pregnancy elicited virus neutralizing antibody responses that were comparable to those elicited by pre-pregnancy vaccination. Vaccination also reduced placental pathology, viral burden and vertical transmission of ZIKV during pregnancy, without causing adverse effects. These results provide key insights into the safety and efficacy of ZPIV vaccination during pregnancy and demonstrate positive effects of vaccination on the reduction of ZIKV infection, an important advance in preparedness for future ZIKV outbreaks.

3.
Immunohorizons ; 7(8): 562-576, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555847

RESUMO

To determine the impact of accumulating Ag exposure on immunity in the aging mouse, and to develop a model more relevant to humans who are exposed to multiple pathogens during life, we sequentially infected young female mice with four distinct pathogens at 8-wk intervals: murine γ-herpesvirus 68, Sendai virus, murine CMV, and Heligmosomoides polygyrus. Mock-infected mice received PBS. After aging the sequentially infected and mock-infected mice to 18-25 mo under specific pathogen-free conditions, we analyzed multiple immune parameters. We assessed transcriptional activity in peripheral blood, T cell phenotype, the diversity of influenza epitopes recognized by CD8 T cells, and the response of the animals to infection with influenza virus and Mycobacterium tuberculosis. Our data show enhanced transcriptional activation in sequentially infected aged mice, with changes in some CD8 T cell subsets. However, there was no measurable difference in the response of mock-infected and sequentially infected aged mice to de novo infection with either influenza virus or M. tuberculosis at 18-21 mo. Unexpectedly, a single experiment in which 25-mo-old female mice were challenged with influenza virus revealed a significantly higher survival rate for sequentially infected (80%) versus mock-infected (20%) mice. These data suggest that although exposure to a variety of pathogen challenges in the mouse model does not overtly impact cellular markers of immunity in aged female mice following de novo respiratory infection, subtle changes may emerge in other compartments or with increasing age.


Assuntos
Mycobacterium tuberculosis , Orthomyxoviridae , Tuberculose , Animais , Feminino , Camundongos , Envelhecimento , Transcriptoma
4.
Sci Transl Med ; 15(699): eabq6517, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285402

RESUMO

Zika virus (ZIKV) infection during pregnancy causes severe developmental defects in newborns, termed congenital Zika syndrome (CZS). Factors contributing to a surge in ZIKV-associated CZS are poorly understood. One possibility is that ZIKV may exploit the antibody-dependent enhancement of infection mechanism, mediated by cross-reactive antibodies from prior dengue virus (DENV) infection, which may exacerbate ZIKV infection during pregnancy. In this study, we investigated the impact of prior DENV infection or no DENV infection on ZIKV pathogenesis during pregnancy in a total of four female common marmosets with five or six fetuses per group. The results showed that negative-sense viral RNA copies increased in the placental and fetal tissues of DENV-immune dams but not in DENV-naïve dams. In addition, viral proteins were prevalent in endothelial cells, macrophages, and neonatal Fc receptor-expressing cells in the placental trabeculae and in neuronal cells in the brains of fetuses from DENV-immune dams. DENV-immune marmosets maintained high titers of cross-reactive ZIKV-binding antibodies that were poorly neutralizing, raising the possibility that these antibodies might be involved in the exacerbation of ZIKV infection. These findings need to be verified in a larger study, and the mechanism involved in the exacerbation of ZIKV infection in DENV-immune marmosets needs further investigation. However, the results suggest a potential negative impact of preexisting DENV immunity on subsequent ZIKV infection during pregnancy in vivo.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Feminino , Gravidez , Callithrix , Anticorpos Neutralizantes , Anticorpos Antivirais , Células Endoteliais , Placenta , Reações Cruzadas
6.
NPJ Vaccines ; 7(1): 9, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087081

RESUMO

Zika virus (ZIKV) is a mosquito-borne arbovirus that can cause severe congenital birth defects. The utmost goal of ZIKV vaccines is to prevent both maternal-fetal infection and congenital Zika syndrome. A Zika purified inactivated virus (ZPIV) was previously shown to be protective in non-pregnant mice and rhesus macaques. In this study, we further examined the efficacy of ZPIV against ZIKV infection during pregnancy in immunocompetent C57BL6 mice and common marmoset monkeys (Callithrix jacchus). We showed that, in C57BL/6 mice, ZPIV significantly reduced ZIKV-induced fetal malformations. Protection of fetuses was positively correlated with virus-neutralizing antibody levels. In marmosets, the vaccine prevented vertical transmission of ZIKV and elicited neutralizing antibodies that remained above a previously determined threshold of protection for up to 18 months. These proof-of-concept studies demonstrate ZPIV's protective efficacy is both potent and durable and has the potential to prevent the harmful consequence of ZIKV infection during pregnancy.

7.
Immunohorizons ; 5(7): 543-556, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266962

RESUMO

Memory T cells that are resident in the tissues (T resident memory [Trm]) serve as frontline responders to prevent reinfection by pathogens. Trm in the lung protect against respiratory viruses. Although these cells have been well characterized, little is known about the impact of immune aging on the establishment, maintenance, function and recall of lung-resident Trm in the context of an influenza virus infection. Aging is associated with a progressive decline in immune function and a generalized inflammatory syndrome, referred to as inflammaging. In this study, we analyzed inflammation in the lung and assessed numbers and function of lung Trm after primary influenza infection and heterosubtypic challenge of young and aged mice. Our analysis showed that aged mice had more severe and sustained lung inflammation than young mice. Analysis of Trm numbers by flow cytometry and direct imaging showed comparable or higher numbers of Trm in aged compared with young mice, with a similar rate of decline over time in both groups of mice. Furthermore, influenza virus-specific Trm from young and aged memory mice were both functional in vitro, and the mice were protected from heterosubtypic challenge. Finally, there were enhanced numbers of T cells resident in the lungs of aged compared with young mice after heterosubtypic viral challenge. The data suggest that the generation, maintenance, and function of Trm in aged mice are not severely impaired and the increased numbers in aged compared with young mice after heterosubtypic challenge may be associated with enhanced lung inflammation in the aged mice.


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteção Cruzada/imunologia , Influenza Humana/imunologia , Células T de Memória/imunologia , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Influenza Humana/patologia , Influenza Humana/virologia , Pulmão/citologia , Pulmão/imunologia , Camundongos , Adulto Jovem
8.
NPJ Vaccines ; 5(1): 102, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33298958

RESUMO

Vaccines based on live attenuated viruses often induce broad, multifaceted immune responses. However, they also usually sacrifice immunogenicity for attenuation. It is particularly difficult to elicit an effective vaccine for herpesviruses due to an armament of immune evasion genes and a latent phase. Here, to overcome the limitation of attenuation, we developed a rational herpesvirus vaccine in which viral immune evasion genes were deleted to enhance immunogenicity while also attaining safety. To test this vaccine strategy, we utilized murine gammaherpesvirus-68 (MHV-68) as a proof-of-concept model for the cancer-associated human γ-herpesviruses, Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. We engineered a recombinant MHV-68 virus by targeted inactivation of viral antagonists of type I interferon (IFN-I) pathway and deletion of the latency locus responsible for persistent infection. This recombinant virus is highly attenuated with no measurable capacity for replication, latency, or persistence in immunocompetent hosts. It stimulates robust innate immunity, differentiates virus-specific memory T cells, and elicits neutralizing antibodies. A single vaccination affords durable protection that blocks the establishment of latency following challenge with the wild type MHV-68 for at least six months post-vaccination. These results provide a framework for effective vaccination against cancer-associated herpesviruses through the elimination of latency and key immune evasion mechanisms from the pathogen.

9.
Vaccine ; 38(33): 5256-5267, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32540272

RESUMO

Elderly individuals are highly susceptible to influenza virus (IAV) infection and respond poorly to influenza vaccines. Although the generally accepted correlate of protection following influenza vaccination is neutralizing antibody titers, cytotoxic T cell activity has been found to be a better correlate in the elderly. This suggests that vaccines designed to protect against influenza in the elderly should induce both humoral and cellular immunity. The co-induction of T cell immunity is additionally advantageous, as virus-specific T cells are frequently cross-reactive against different strains of IAV. Here, we tested the capacity of a synthetic TLR-4 adjuvant, SLA-SE (second-generation lipid adjuvant formulated in a squalene-based oil-in-water emulsion) to elicit T cell immunity to a recombinant influenza nucleoprotein (rNP), in both young and aged mice. IAV challenge of vaccinated mice resulted in a modest increase in the numbers of NP-specific CD4 and CD8 effector T cells in the spleen, but did not increase numbers of memory phenotype CD8 T cells generated following viral clearance (compared to control vaccinated mice). Cytotoxic activity of CD8, but not CD4 T cells was increased. In addition, SLA-SE adjuvanted vaccination specifically enhanced the production of NP-specific IgG2c antibodies in both young and aged mice. Although NP-specific antibodies are not neutralizing, they can cooperate with CD8 T cells and antigen-presenting cells to enhance protective immunity. Importantly, SLA-SE adjuvanted rNP-vaccination of aged mice resulted in significantly enhanced viral clearance. In addition, vaccination of aged mice resulted in enhanced survival after lethal challenge compared to control vaccination, that approached statistical significance. These data demonstrate the potential of SLA-SE adjuvanted rNP vaccines to (i) generate both cellular and humoral immunity to relatively conserved IAV proteins and (ii) elicit protective immunity to IAV in aged mice.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Nucleoproteínas , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação
10.
Viral Immunol ; 33(3): 211-214, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32286177

RESUMO

Studies inspired by Dr. Peter Doherty led to over 16 years of research into the mouse gamma-herpesvirus, γHV68, in the Blackman laboratory. Progress on our understanding of γHV68 biology include insight into the establishment of latency, immune control of the acute and latent stages of infection and experimental vaccines, is described here.


Assuntos
Antígenos Virais/imunologia , Infecções por Herpesviridae/imunologia , Herpesviridae/imunologia , Latência Viral , Animais , Herpesviridae/classificação , Humanos , Camundongos Endogâmicos C57BL , Superantígenos/imunologia , Ativação Viral , Replicação Viral
11.
Vaccine ; 37(43): 6248-6254, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500964

RESUMO

Emerging and re-emerging infectious diseases are an expanding global threat to public health, security, and economies. Increasing populations, urbanization, deforestation, climate change, anti-vaccination movements, war, and international travel are some of the contributing factors to this trend. The recent Ebola, MERS-CoV, and Zika outbreaks demonstrated we are insufficiently prepared to respond with proven safe and effective countermeasures (i.e., vaccines and therapeutics). The State University of New York Upstate Medical University and the Trudeau Institute convened a summit of key opinion and thought leaders in the life sciences and biomedical research and development enterprises to explore global biopreparedness challenges, take an inventory of existing capabilities and capacities related to preparation and response, assess current "gaps," and prospect what could be done to improve our position. Herein we describe the summit proceedings, "Translational Immunology Supporting Biomedical Countermeasure Development for Emerging Vector-borne Viral Diseases," held October 2-3, 2018, at the Trudeau Institute in Saranac Lake, NY.


Assuntos
Doenças Transmissíveis Emergentes , Vetores de Doenças , Vacinas Virais/farmacologia , Viroses/prevenção & controle , Animais , Ensaios Clínicos como Assunto , Doenças Transmissíveis Emergentes/prevenção & controle , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Influenza Humana/etiologia , Influenza Humana/prevenção & controle , Gravidez , Complicações Infecciosas na Gravidez/etiologia , Pesquisa Translacional Biomédica , Vacinas Virais/uso terapêutico , Infecção por Zika virus/etiologia , Infecção por Zika virus/prevenção & controle
12.
Trop Med Infect Dis ; 4(2)2019 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959955

RESUMO

Zika virus (ZIKV) infection during pregnancy can result in a variety of developmental abnormalities in the fetus, referred to as Congenital Zika Syndrome (CZS). The effects of CZS can range from the loss of the viable fetus to a variety of neurological defects in full-term infants, including microcephaly. The clinical importance of ZIKV-induced CZS has driven an intense effort to develop effective vaccines. Consequently, there are approximately 45 different ZIKV vaccine candidates at various stages of development with several undergoing phase I and II clinical trials. These vaccine candidates have been shown to effectively prevent infection in adult animal models, however, there has been less extensive testing for their ability to block vertical transmission to the fetus during pregnancy or prevent the development of CZS. In addition, it is becoming increasingly difficult to test vaccines in the field as the intensity of the ZIKV epidemic has declined precipitously, making clinical endpoint studies difficult. These ethical and practical challenges in determining efficacy of ZIKV vaccine candidates in preventing CZS have led to increased emphasis on pre-clinical testing in animal pregnancy models. Here we review the current status of pre-clinical pregnancy models for testing the ability of ZIKV vaccines to prevent CZS.

14.
Immun Ageing ; 15: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30093911

RESUMO

BACKGROUND: A diverse repertoire of naïve T cells is thought to be essential for a robust response to new infections. However, a key aspect of aging of the T cell compartment is a decline in numbers and diversity of peripheral naïve T cells. We have hypothesized that the age-related decline in naïve T cells forces the immune system to respond to new infections using cross-reactive memory T cells generated to previous infections that dominate the aged peripheral T cell repertoire. RESULTS: Here we confirm that the CD8 T cell response of aged, influenza-naïve mice to primary infection with influenza virus is dominated by T cells that derive from the memory T cell pool. These cells exhibit the phenotypic characteristics of virtual memory cells rather than true memory cells. Furthermore, we find that the repertoire of responding CD8 T cells is constrained compared with that of young mice, and differs significantly between individual aged mice. After infection, these virtual memory CD8 T cells effectively develop into granzyme-producing effector cells, and clear virus with kinetics comparable to naïve CD8 T cells from young mice. CONCLUSIONS: The response of aged, influenza-naive mice to a new influenza infection is mediated largely by memory CD8 T cells. However, unexpectedly, they have the phenotype of VM cells. In response to de novo influenza virus infection, the VM cells develop into granzyme-producing effector cells and clear virus with comparable kinetics to young CD8 T cells.

15.
PLoS Pathog ; 14(4): e1006994, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29634758

RESUMO

Zika virus (ZIKV) infection during human pregnancy may cause diverse and serious congenital defects in the developing fetus. Previous efforts to generate animal models of human ZIKV infection and clinical symptoms often involved manipulating mice to impair their Type I interferon (IFN) signaling, thereby allowing enhanced infection and vertical transmission of virus to the embryo. Here, we show that even pregnant mice competent to generate Type I IFN responses that can limit ZIKV infection nonetheless develop profound placental pathology and high frequency of fetal demise. We consistently found that maternal ZIKV exposure led to placental pathology and that ZIKV RNA levels measured in maternal, placental or embryonic tissues were not predictive of the pathological effects seen in the embryos. Placental pathology included trophoblast hyperplasia in the labyrinth, trophoblast giant cell necrosis in the junctional zone, and loss of embryonic vessels. Our findings suggest that, in this context of limited infection, placental pathology rather than embryonic/fetal viral infection may be a stronger contributor to adverse pregnancy outcomes in mice. Our finding demonstrates that in immunocompetent mice, direct viral infection of the embryo is not essential for fetal demise. Our immunologically unmanipulated pregnancy mouse model provides a consistent and easily measurable congenital abnormality readout to assess fetal outcome, and may serve as an additional model to test prophylactic and therapeutic interventions to protect the fetus during pregnancy, and for studying the mechanisms of ZIKV congenital immunopathogenesis.


Assuntos
Modelos Animais de Doenças , Doenças Fetais/patologia , Doenças Placentárias/patologia , Complicações Infecciosas na Gravidez/patologia , Infecção por Zika virus/patologia , Zika virus/fisiologia , Animais , Feminino , Doenças Fetais/virologia , Transmissão Vertical de Doenças Infecciosas , Camundongos , Camundongos Endogâmicos C57BL , Doenças Placentárias/virologia , Gravidez , Complicações Infecciosas na Gravidez/virologia , Resultado da Gravidez , RNA Viral , Infecção por Zika virus/virologia
16.
Viral Immunol ; 31(2): 117-123, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29227202

RESUMO

The emergence of outbreaks of Zika virus (ZIKV) in Brazil in 2015 was associated with devastating effects on fetal development and prompted a world health emergency and multiple efforts to generate an effective vaccine against infection. There are now more than 40 vaccine candidates in preclinical development and six in clinical trials. Despite similarities with other flaviviruses to which successful vaccines have been developed, such as yellow fever virus and Japanese Encephalitis virus, there are unique challenges to the development and clinical trials of a vaccine for ZIKV.


Assuntos
Descoberta de Drogas/tendências , Vacinas Virais/imunologia , Vacinas Virais/isolamento & purificação , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Infecção por Zika virus/epidemiologia
17.
Cell Host Microbe ; 19(1): 91-101, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764599

RESUMO

Host genes that regulate systemic inflammation upon chronic viral infection are incompletely understood. Murine gammaherpesvirus 68 (MHV68) infection is characterized by latency in macrophages, and reactivation is inhibited by interferon-γ (IFN-γ). Using a lysozyme-M-cre (LysMcre) expression system, we show that deletion of autophagy-related (Atg) genes Fip200, beclin 1, Atg14, Atg16l1, Atg7, Atg3, and Atg5, in the myeloid compartment, inhibited MHV68 reactivation in macrophages. Atg5 deficiency did not alter reactivation from B cells, and effects on reactivation from macrophages were not explained by alterations in productive viral replication or the establishment of latency. Rather, chronic MHV68 infection triggered increased systemic inflammation, increased T cell production of IFN-γ, and an IFN-γ-induced transcriptional signature in macrophages from Atg gene-deficient mice. The Atg5-related reactivation defect was partially reversed by neutralization of IFN-γ. Thus Atg genes in myeloid cells dampen virus-induced systemic inflammation, creating an environment that fosters efficient MHV68 reactivation from latency.


Assuntos
Autofagia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/fisiopatologia , Rhadinovirus/fisiologia , Ativação Viral , Latência Viral , Animais , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/imunologia , Células Mieloides/imunologia , Rhadinovirus/genética , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/imunologia
18.
J Immunol ; 194(6): 2746-56, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25662997

RESUMO

CD4(+) T cells are critical for the control of virus infections, T cell memory, and immune surveillance. We studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4(+) T cells using gp150-specific TCR-transgenic mice. This allowed a more detailed study of the characteristics of the CD4(+) T cell response than did previously available approaches for this virus. Most gp150-specific CD4(+) T cells expressed T-bet and produced IFN-γ, indicating that MHV-68 infection triggered differentiation of CD4(+) T cells largely into the Th1 subset, whereas some became follicular Th cells and Foxp3(+) regulatory T cells. These CD4(+) T cells were protective against MHV-68 infection in the absence of CD8(+) T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4(+) T cells, based on lymphocyte Ag 6C (Ly6C) expression. Ly6C expression positively correlated with IFN-γ, TNF-α, and granzyme B production; T-bet and KLRG1 expression; proliferation; and CD4(+) T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression, and secondary expansion potential. Ly6C(+) and Ly6C(-) gp150-specific CD4(+) T cells were able to interconvert in a bidirectional manner upon secondary Ag exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4(+) T cells but is inversely correlated with memory potential. Interconversion between Ly6C(+) and Ly6C(-) cells may maintain a balance between the two Ag-specific CD4(+) T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4(+) T cells during persistent virus infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Rhadinovirus/imunologia , Infecções Tumorais por Vírus/imunologia , Animais , Antígenos Ly/imunologia , Antígenos Ly/metabolismo , Apoptose/genética , Apoptose/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Citometria de Fluxo , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Interações Hospedeiro-Patógeno/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Rhadinovirus/fisiologia , Baço/imunologia , Baço/metabolismo , Baço/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/virologia
19.
Viral Immunol ; 27(10): 484-96, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25479178

RESUMO

Immunopathologic examination of the lungs of mice with experimental influenza virus infection reveals three prominent findings. (i) There is rapidly developing perivascular (arterial) and peribronchial infiltration with T-cells and invasion of T-cells into the bronchiolar epithelium, separation of epithelial cells from each other and from the basement membrane, leading to defoliation of the bronchial epithelium. This reaction is analogous to a viral exanthema of the skin, such as measles and smallpox. This previously described but unappreciated reaction most likely is an effective way to eliminate virus-infected cells, but may contribute to acute toxicity and mortality. (ii) After this, there is formation of dense collections of lymphocytes adjacent to bronchi consisting mainly of B-cells, with a scattering of T-cells and macrophages. This is known as induced bronchial-associated lymphoid tissue (iBALT) and correlates with increased interleukin (IL)-17 in the lung. iBALT provides sites for a local immune reaction in the lung to both the original infection and related viral infections (heterologous immunity). (iii) Within the first 2-3 weeks, there is proliferation of type II pneumocytes and/or terminal bronchial epithelial cells extending from the terminal bronchioles into the adjacent alveoli, eventually leading to large zones of the lung filled with tumor-like epithelial cells with squamous metaplasia. The proliferation correlates with IL-17 and IL-22 expression, and the extent of this reaction appears to be determined by the availability of T-regulatory cells.


Assuntos
Células Epiteliais Alveolares/fisiologia , Proliferação de Células , Tecido Linfoide/patologia , Infecções por Orthomyxoviridae/patologia , Mucosa Respiratória/patologia , Linfócitos T Citotóxicos/imunologia , Animais , Brônquios/imunologia , Brônquios/patologia , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/patologia , Tecido Linfoide/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Mucosa Respiratória/imunologia
20.
J Immunol ; 193(12): 5827-34, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25378595

RESUMO

The oncogenic γ-herpesviruses EBV and Kaposi sarcoma-associated herpesvirus are ubiquitous human pathogens that establish lifelong latent infections maintained by intermittent viral reactivation and reinfection. Effector CD4 T cells are critical for control of viral latency and in immune therapies for virus-associated tumors. In this study, we exploited γHV68 infection of mice to enhance our understanding of the CD4 T cell response during γ-herpesvirus infection. Using a consensus prediction approach, we identified 16 new CD4 epitope-specific responses that arise during lytic infection. An additional epitope encoded by the M2 protein induced uniquely latency-associated CD4 T cells, which were not detected at the peak of lytic infection but only during latency and were not induced postinfection with a latency-deficient virus. M2-specific CD4 T cells were selectively cytotoxic, produced multiple antiviral cytokines, and sustained IL-2 production. Identification of latency-associated cytolytic CD4 T cells will aid in dissecting mechanisms of CD4 immune control of γ-herpesvirus latency and the development of therapeutic approaches to control viral reactivation and pathology.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citotoxicidade Imunológica , Epitopos de Linfócito T/imunologia , Gammaherpesvirinae/imunologia , Latência Viral , Sequência de Aminoácidos , Animais , Linfócitos T CD4-Positivos/metabolismo , Citocinas/biossíntese , Epitopos de Linfócito T/química , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/virologia , Interferon gama/biossíntese , Ativação Linfocitária/imunologia , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA