Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 31(1): 83-96.e5, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36596305

RESUMO

HIV-1 establishes a life-long reservoir of virally infected cells which cannot be eliminated by antiretroviral therapy (ART). Here, we demonstrate a markedly altered viral reservoir profile of long-term ART-treated individuals, characterized by large clones of intact proviruses preferentially integrated in heterochromatin locations, most prominently in centromeric satellite/micro-satellite DNA. Longitudinal evaluations suggested that this specific reservoir configuration results from selection processes that promote the persistence of intact proviruses in repressive chromatin positions, while proviruses in permissive chromosomal locations are more likely to be eliminated. A bias toward chromosomal integration sites in heterochromatin locations was also observed for intact proviruses in study participants who maintained viral control after discontinuation of antiretroviral therapy. Together, these results raise the possibility that antiviral selection mechanisms during long-term ART may induce an HIV-1 reservoir structure with features of deep latency and, possibly, more limited abilities to drive rebound viremia upon treatment interruptions.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , Heterocromatina , Provírus/genética , Antivirais/uso terapêutico , Linfócitos T CD4-Positivos , Latência Viral , Carga Viral , Antirretrovirais/uso terapêutico
2.
Cell ; 185(2): 266-282.e15, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35026153

RESUMO

HIV-1-infected cells that persist despite antiretroviral therapy (ART) are frequently considered "transcriptionally silent," but active viral gene expression may occur in some cells, challenging the concept of viral latency. Applying an assay for profiling the transcriptional activity and the chromosomal locations of individual proviruses, we describe a global genomic and epigenetic map of transcriptionally active and silent proviral species and evaluate their longitudinal evolution in persons receiving suppressive ART. Using genome-wide epigenetic reference data, we show that proviral transcriptional activity is associated with activating epigenetic chromatin features in linear proximity of integration sites and in their inter- and intrachromosomal contact regions. Transcriptionally active proviruses were actively selected against during prolonged ART; however, this pattern was violated by large clones of virally infected cells that may outcompete negative selection forces through elevated intrinsic proliferative activity. Our results suggest that transcriptionally active proviruses are dynamically evolving under selection pressure by host factors.


Assuntos
HIV-1/genética , Provírus/genética , Transcrição Gênica , Idoso , Sequência de Bases , Evolução Biológica , Cromatina/metabolismo , Células Clonais , DNA Viral/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Ionomicina/farmacologia , Masculino , Pessoa de Meia-Idade , Filogenia , Provírus/efeitos dos fármacos , RNA Viral/genética , Acetato de Tetradecanoilforbol/farmacologia , Transcrição Gênica/efeitos dos fármacos , Integração Viral/genética , Latência Viral/efeitos dos fármacos , Latência Viral/genética
3.
Nature ; 585(7824): 261-267, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848246

RESUMO

Sustained, drug-free control of HIV-1 replication is naturally achieved in less than 0.5% of infected individuals (here termed 'elite controllers'), despite the presence of a replication-competent viral reservoir1. Inducing such an ability to spontaneously maintain undetectable plasma viraemia is a major objective of HIV-1 cure research, but the characteristics of proviral reservoirs in elite controllers remain to be determined. Here, using next-generation sequencing of near-full-length single HIV-1 genomes and corresponding chromosomal integration sites, we show that the proviral reservoirs of elite controllers frequently consist of oligoclonal to near-monoclonal clusters of intact proviral sequences. In contrast to individuals treated with long-term antiretroviral therapy, intact proviral sequences from elite controllers were integrated at highly distinct sites in the human genome and were preferentially located in centromeric satellite DNA or in Krüppel-associated box domain-containing zinc finger genes on chromosome 19, both of which are associated with heterochromatin features. Moreover, the integration sites of intact proviral sequences from elite controllers showed an increased distance to transcriptional start sites and accessible chromatin of the host genome and were enriched in repressive chromatin marks. These data suggest that a distinct configuration of the proviral reservoir represents a structural correlate of natural viral control, and that the quality, rather than the quantity, of viral reservoirs can be an important distinguishing feature for a functional cure of HIV-1 infection. Moreover, in one elite controller, we were unable to detect intact proviral sequences despite analysing more than 1.5 billion peripheral blood mononuclear cells, which raises the possibility that a sterilizing cure of HIV-1 infection, which has previously been observed only following allogeneic haematopoietic stem cell transplantation2,3, may be feasible in rare instances.


Assuntos
Inativação Gênica , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Heterocromatina/genética , Provírus/genética , Integração Viral/genética , Latência Viral/genética , Adulto , Idoso , Centrômero/genética , Cromossomos Humanos Par 19/genética , DNA Satélite/genética , Feminino , Genoma Viral/genética , Infecções por HIV/sangue , HIV-1/isolamento & purificação , Heterocromatina/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Provírus/isolamento & purificação , Proteínas Repressoras/genética , Sítio de Iniciação de Transcrição
4.
Nat Commun ; 11(1): 2421, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415086

RESUMO

Zika virus (ZIKV) is a mosquito-borne pathogen with increasing public health significance. To characterize immune responses to ZIKV, here we examine transcriptional signatures of CD4 T, CD8 T, B, and NK cells, monocytes, myeloid dendritic cells (mDCs), and plasmacytoid dendritic cells (pDCs) from three individuals with ZIKV infection. While gene expression patterns from most cell subsets display signs of impaired antiviral immune activity, pDCs from infected host have distinct transcriptional response associated with activation of innate immune recognition and type I interferon signaling pathways, but downregulation of key host factors known to support ZIKV replication steps; meanwhile, pDCs exhibit a unique expression pattern of gene modules that are correlated with alternative cell populations, suggesting collaborative interactions between pDCs and other immune cells, particularly B cells. Together, these results point towards a discrete but integrative function of pDCs in the human immune responses to ZIKV infection.


Assuntos
Células Dendríticas/imunologia , Infecção por Zika virus/imunologia , Adulto , Animais , Linfócitos B/virologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Células Cultivadas , Culicidae , Células Dendríticas/virologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imunidade Inata , Células Matadoras Naturais/virologia , Leucócitos Mononucleares/virologia , Monócitos/metabolismo , Monócitos/virologia , Células Mieloides/virologia , Transcrição Gênica , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/virologia
5.
J Infect Dis ; 222(4): 655-660, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32236405

RESUMO

The majority of cells with latent human immunodeficiency virus 1 infection are located in lymphoid tissues that are difficult to access. In the current study, we used single-genome near-full-length proviral sequencing to evaluate intact and defective proviruses in blood and lymph node CD4 T cells enriched for specific functional polarizations. We observed minor variations between the frequencies of proviral sequences within individual CD4 T-cell subsets and across tissue compartments. However, we noted multiple clonal clusters of identical intact or defective proviral sequences from distinct compartments and CD4 T-cell subpopulations, suggesting frequent interchanges between viral reservoir cells in blood and tissues.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/sangue , HIV-1/genética , Linfonodos/virologia , Provírus/genética , Subpopulações de Linfócitos T/virologia , Antirretrovirais/uso terapêutico , Sequência de Bases , DNA Viral/sangue , Infecções por HIV/tratamento farmacológico , Humanos , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA