Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mov Ecol ; 10(1): 40, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36127747

RESUMO

Animal behavioural responses to the environment ultimately affect their survival. Monitoring animal fine-scale behaviour may improve understanding of animal functional response to the environment and provide an important indicator of the welfare of both wild and domesticated species. In this study, we illustrate the application of collar-attached acceleration sensors for investigating reindeer fine-scale behaviour. Using data from 19 reindeer, we tested the supervised machine learning algorithms Random forests, Support vector machines, and hidden Markov models to classify reindeer behaviour into seven classes: grazing, browsing low from shrubs or browsing high from trees, inactivity, walking, trotting, and other behaviours. We implemented leave-one-subject-out cross-validation to assess generalizable results on new individuals. Our main results illustrated that hidden Markov models were able to classify collar-attached accelerometer data into all our pre-defined behaviours of reindeer with reasonable accuracy while Random forests and Support vector machines were biased towards dominant classes. Random forests using 5-s windows had the highest overall accuracy (85%), while hidden Markov models were able to best predict individual behaviours and handle rare behaviours such as trotting and browsing high. We conclude that hidden Markov models provide a useful tool to remotely monitor reindeer and potentially other large herbivore species behaviour. These methods will allow us to quantify fine-scale behavioural processes in relation to environmental events.

2.
Biometrics ; 78(1): 286-299, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270218

RESUMO

This article presents a new method for modelling collective movement in continuous time with behavioural switching, motivated by simultaneous tracking of wild or semi-domesticated animals. Each individual in the group is at times attracted to a unobserved leading point. However, the behavioural state of each individual can switch between 'following' and 'independent'. The 'following' movement is modelled through a linear stochastic differential equation, while the 'independent' movement is modelled as Brownian motion. The movement of the leading point is modelled either as an Ornstein-Uhlenbeck (OU) process or as Brownian motion (BM), which makes the whole system a higher-dimensional Ornstein-Uhlenbeck process, possibly an intrinsic non-stationary version. An inhomogeneous Kalman filter Markov chain Monte Carlo algorithm is developed to estimate the diffusion and switching parameters and the behaviour states of each individual at a given time point. The method successfully recovers the true behavioural states in simulated data sets , and is also applied to model a group of simultaneously tracked reindeer (Rangifer tarandus).


Assuntos
Movimento , Rena , Algoritmos , Animais , Cadeias de Markov , Método de Monte Carlo
3.
Sci Rep ; 11(1): 19157, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580337

RESUMO

Environmental and ecosystem models can help to guide management of changing natural systems by projecting alternative future states under a common set of scenarios. Combining contrasting models into multi-model ensembles (MMEs) can improve the skill and reliability of projections, but associated uncertainty complicates communication of outputs, affecting both the effectiveness of management decisions and, sometimes, public trust in scientific evidence itself. Effective data visualisation can play a key role in accurately communicating such complex outcomes, but we lack an evidence base to enable us to design them to be visually appealing whilst also effectively communicating accurate information. To address this, we conducted a survey to identify the most effective methods for visually communicating the outputs of an ensemble of global climate models. We measured the accuracy, confidence, and ease with which the survey participants were able to interpret 10 visualisations depicting the same set of model outputs in different ways, as well as their preferences. Dot and box plots outperformed all other visualisations, heat maps and radar plots were comparatively ineffective, while our infographic scored highly for visual appeal but lacked information necessary for accurate interpretation. We provide a set of guidelines for visually communicating the outputs of MMEs across a wide range of research areas, aimed at maximising the impact of the visualisations, whilst minimizing the potential for misinterpretations, increasing the societal impact of the models and ensuring they are well-placed to support management in the future.

4.
Biometrics ; 76(2): 438-447, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31654395

RESUMO

Habitat selection models are used in ecology to link the spatial distribution of animals to environmental covariates and identify preferred habitats. The most widely used models of this type, resource selection functions, aim to capture the steady-state distribution of space use of the animal, but they assume independence between the observed locations of an animal. This is unrealistic when location data display temporal autocorrelation. The alternative approach of step selection functions embed habitat selection in a model of animal movement, to account for the autocorrelation. However, inferences from step selection functions depend on the underlying movement model, and they do not readily predict steady-state space use. We suggest an analogy between parameter updates and target distributions in Markov chain Monte Carlo (MCMC) algorithms, and step selection and steady-state distributions in movement ecology, leading to a step selection model with an explicit steady-state distribution. In this framework, we explain how maximum likelihood estimation can be used for simultaneous inference about movement and habitat selection. We describe the local Gibbs sampler, a novel rejection-free MCMC scheme, use it as the basis of a flexible class of animal movement models, and derive its likelihood function for several important special cases. In a simulation study, we verify that maximum likelihood estimation can recover all model parameters. We illustrate the application of the method with data from a zebra.


Assuntos
Ecossistema , Algoritmos , Migração Animal , Animais , Biometria , Simulação por Computador , Ecologia/estatística & dados numéricos , Equidae , Funções Verossimilhança , Cadeias de Markov , Modelos Biológicos , Método de Monte Carlo , Dinâmica Populacional/estatística & dados numéricos
5.
Ecology ; 100(1): e02452, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30047993

RESUMO

The two dominant approaches for the analysis of species-habitat associations in animals have been shown to reach divergent conclusions. Models fitted from the viewpoint of an individual (step selection functions), once scaled up, do not agree with models fitted from a population viewpoint (resource selection functions [RSFs]). We explain this fundamental incompatibility, and propose a solution by introducing to the animal movement field a novel use for the well-known family of Markov chain Monte Carlo (MCMC) algorithms. By design, the step selection rules of MCMC lead to a steady-state distribution that coincides with a given underlying function: the target distribution. We therefore propose an analogy between the movements of an animal and the movements of an MCMC sampler, to guarantee convergence of the step selection rules to the parameters underlying the population's utilization distribution. We introduce a rejection-free MCMC algorithm, the local Gibbs sampler, that better resembles real animal movement, and discuss the wide range of biological assumptions that it can accommodate. We illustrate our method with simulations on a known utilization distribution, and show theoretically and empirically that locations simulated from the local Gibbs sampler give rise to the correct RSF. Using simulated data, we demonstrate how this framework can be used to estimate resource selection and movement parameters.


Assuntos
Algoritmos , Ecossistema , Animais , Cadeias de Markov , Método de Monte Carlo , Movimento
6.
Ecol Evol ; 8(14): 7031-7043, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30073065

RESUMO

Understanding how, where, and when animals move is a central problem in marine ecology and conservation. Key to improving our knowledge about what drives animal movement is the rising deployment of telemetry devices on a range of free-roaming species. An increasingly popular way of gaining meaningful inference from an animal's recorded movements is the application of hidden Markov models (HMMs), which allow for the identification of latent behavioral states in the movement paths of individuals. However, the use of HMMs to explore the population-level consequences of movement is often limited by model complexity and insufficient sample sizes. Here, we introduce an alternative approach to current practices and provide evidence of how the inclusion of prior information in model structure can simplify the application of HMMs to multiple animal movement paths with two clear benefits: (a) consistent state allocation and (b) increases in effective sample size. To demonstrate the utility of our approach, we apply HMMs and adapted HMMs to over 100 multivariate movement paths consisting of conditionally dependent daily horizontal and vertical movements in two species of demersal fish: Atlantic cod (Gadus morhua; n = 46) and European plaice (Pleuronectes platessa; n = 61). We identify latent states corresponding to two main underlying behaviors: resident and migrating. As our analysis considers a relatively large sample size and states are allocated consistently, we use collective model output to investigate state-dependent spatiotemporal trends at the individual and population levels. In particular, we show how both species shift their movement behaviors on a seasonal basis and demonstrate population space use patterns that are consistent with previous individual-level studies. Tagging studies are increasingly being used to inform stock assessment models, spatial management strategies, and monitoring of marine fish populations. Our approach provides a promising way of adding value to tagging studies because inferences about movement behavior can be gained from a larger proportion of datasets, making tagging studies more relevant to management and more cost-effective.

8.
PLoS Biol ; 15(11): e2003355, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29182630

RESUMO

Australia's iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem's systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these 'robust source reefs', which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Ecossistema , Animais , Larva , Ondas de Maré
9.
Biometrics ; 72(2): 315-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26812666

RESUMO

This article presents a new approach to modeling group animal movement in continuous time. The movement of a group of animals is modeled as a multivariate Ornstein Uhlenbeck diffusion process in a high-dimensional space. Each individual of the group is attracted to a leading point which is generally unobserved, and the movement of the leading point is also an Ornstein Uhlenbeck process attracted to an unknown attractor. The Ornstein Uhlenbeck bridge is applied to reconstruct the location of the leading point. All movement parameters are estimated using Markov chain Monte Carlo sampling, specifically a Metropolis Hastings algorithm. We apply the method to a small group of simultaneously tracked reindeer, Rangifer tarandus tarandus, showing that the method detects dependency in movement between individuals.


Assuntos
Modelos Biológicos , Movimento , Algoritmos , Animais , Ciências Biocomportamentais , Simulação por Computador , Cadeias de Markov , Método de Monte Carlo , Rena
10.
Proc Natl Acad Sci U S A ; 104(20): 8362-7, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17488824

RESUMO

Reduced fishing pressure and weak predator-prey interactions within marine reserves can create trophic cascades that increase the number of grazing fishes and reduce the coverage of macroalgae on coral reefs. Here, we show that the impacts of reserves extend beyond trophic cascades and enhance the process of coral recruitment. Increased fish grazing, primarily driven by reduced fishing, was strongly negatively correlated with macroalgal cover and resulted in a 2-fold increase in the density of coral recruits within a Bahamian reef system. Our conclusions are robust because four alternative hypotheses that may generate a spurious correlation between grazing and coral recruitment were tested and rejected. Grazing appears to influence the density and community structure of coral recruits, but no detectable influence was found on the overall size-frequency distribution, community structure, or cover of corals. We interpret this absence of pattern in the adult coral community as symptomatic of the impact of a recent disturbance event that masks the recovery trajectories of individual reefs. Marine reserves are not a panacea for conservation but can facilitate the recovery of corals from disturbance and may help sustain the biodiversity of organisms that depend on a complex three-dimensional coral habitat.


Assuntos
Antozoários/fisiologia , Conservação dos Recursos Naturais , Cadeia Alimentar , Animais , Biodiversidade , Eucariotos/fisiologia , Peixes/fisiologia , Larva , Modelos Biológicos , Comportamento Predatório/fisiologia
11.
Ecology ; 87(11): 2871-81, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17168031

RESUMO

Quantifying the beta diversity (species replacement along spatiotemporal gradients) of ecosystems is important for understanding and conserving patterns of biodiversity. However, virtually all studies of beta diversity focus on one-dimensional transects orientated along a specific environmental gradient that is defined a priori. By ignoring a second spatial dimension and the associated changes in species composition and environmental gradients, this approach may provide limited insight into the full pattern of beta diversity. Here, we use remotely sensed imagery to quantify beta diversity continuously, in two dimensions, and at multiple scales across an entire tropical marine seascape. We then show that beta diversity can be modeled (0.852 > or = r2 > or = 0.590) at spatial scales between 0.5 and 5.0 km2, using the environmental variables of mean and variance of depth and wave exposure. Beta diversity, quantified within a "window" of a given size, is positively correlated to the range of environmental conditions within that window. For example, beta diversity increases with increasing variance of depth. By analyzing such relationships across seascapes, this study provides a framework for a range of disparate coral reef literature including studies of zonation, diversity, and disturbance. Using supporting evidence from soft-bottom communities, we hypothesize that depth will be an important variable for modeling beta diversity in a range of marine systems. We discuss the implications of our results for the design of marine reserves.


Assuntos
Antozoários/fisiologia , Biodiversidade , Biologia Marinha , Modelos Biológicos , Animais , Ecossistema , Meio Ambiente , Análise dos Mínimos Quadrados , Ilhas Virgens Americanas
12.
Arch Oral Biol ; 50(2): 287-91, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15721163

RESUMO

OBJECTIVE: Identifying the patterning of congenitally absent teeth will contribute to understanding the aetiology of hypodontia. The aim of this study was to investigate patterns of hypodontia in a group of young adults in Sheffield, UK involving specific tooth types, gender differences and maxilla:mandible and left:right correlations. METHODS: The patients were 198 unrelated Caucasian young adults (86 males and 112 females) with non-syndromic hypodontia. Statistical methods included the multivariate techniques of cluster analysis and principal components analysis and associated display devices of circular dotplots and biplots. Autologistic regression was used to model the relationship of the presence or absence of a particular tooth to the status of other teeth. RESULTS: The results revealed distinct patterns of dependence. Common patterns included either third molars and second premolars missing in all quadrants and/or combinations of these two tooth types and the incisors. The gender of the patient and the severity of hypodontia did not have a significant effect on patterns of tooth type absence. If a tooth was missing, the odds ratios that the same tooth type in the horizontally or vertically opposite quadrant was also missing were some 20 times higher than if the tooth was present. For diagonally opposite quadrants the dependence was much weaker. CONCLUSIONS: These statistical techniques are valuable for increasing understanding of hypodontia and identifying groups of patients for genetic studies.


Assuntos
Anodontia/patologia , Dentição Permanente , Adolescente , Adulto , Análise por Conglomerados , Arco Dental/patologia , Inglaterra , Feminino , Humanos , Incisivo , Masculino , Dente Molar , Dente Serotino , Análise de Componente Principal , Fatores Sexuais
13.
Nature ; 427(6974): 533-6, 2004 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-14765193

RESUMO

Mangrove forests are one of the world's most threatened tropical ecosystems with global loss exceeding 35% (ref. 1). Juvenile coral reef fish often inhabit mangroves, but the importance of these nurseries to reef fish population dynamics has not been quantified. Indeed, mangroves might be expected to have negligible influence on reef fish communities: juvenile fish can inhabit alternative habitats and fish populations may be regulated by other limiting factors such as larval supply or fishing. Here we show that mangroves are unexpectedly important, serving as an intermediate nursery habitat that may increase the survivorship of young fish. Mangroves in the Caribbean strongly influence the community structure of fish on neighbouring coral reefs. In addition, the biomass of several commercially important species is more than doubled when adult habitat is connected to mangroves. The largest herbivorous fish in the Atlantic, Scarus guacamaia, has a functional dependency on mangroves and has suffered local extinction after mangrove removal. Current rates of mangrove deforestation are likely to have severe deleterious consequences for the ecosystem function, fisheries productivity and resilience of reefs. Conservation efforts should protect connected corridors of mangroves, seagrass beds and coral reefs.


Assuntos
Antozoários , Peixes/fisiologia , Magnoliopsida/fisiologia , Árvores/fisiologia , Animais , Antozoários/fisiologia , Belize , Biomassa , Região do Caribe , Meio Ambiente , México , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA