RESUMO
Bacteria sense and respond to osmolarity through the EnvZ-OmpR two-component system. The structure of the periplasmic sensor domain of EnvZ (EnvZ-PD) is not available yet. Here, we present the crystal structure of EnvZ-PD in the presence of CHAPS detergent. The structure of EnvZ-PD shows similar folding topology to the PDC domains of PhoQ, DcuS, and CitA, but distinct orientations of helices and ß-hairpin structures. The CD and NMR spectra of EnvZ-PD in the presence of cholate, a major component of bile salts, are similar to those with CHAPS. Chemical cross-linking shows that the dimerization of EnvZ-PD is significantly inhibited by the CHAPS and cholate. Together with ß-galactosidase assay, these results suggest that bile salts may affect the EnvZ structure and function in Escherichia coli.
Assuntos
Proteínas da Membrana Bacteriana Externa/química , Colatos/farmacologia , Ácidos Cólicos/farmacologia , Detergentes/farmacologia , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Complexos Multienzimáticos/química , Proteínas da Membrana Bacteriana Externa/efeitos dos fármacos , Dicroísmo Circular , Cristalografia por Raios X , Proteínas de Escherichia coli/efeitos dos fármacos , Modelos Moleculares , Complexos Multienzimáticos/efeitos dos fármacos , Domínios Proteicos/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/efeitos dos fármacosRESUMO
Although nearly half of today's major pharmaceutical drugs target human integral membrane proteins (hIMPs), only 30 hIMP structures are currently available in the Protein Data Bank, largely owing to inefficiencies in protein production. Here we describe a strategy for the rapid structure determination of hIMPs, using solution NMR spectroscopy with systematically labeled proteins produced via cell-free expression. We report new backbone structures of six hIMPs, solved in only 18 months from 15 initial targets. Application of our protocols to an additional 135 hIMPs with molecular weight <30 kDa yielded 38 hIMPs suitable for structural characterization by solution NMR spectroscopy without additional optimization.
Assuntos
Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Peso Molecular , Conformação ProteicaRESUMO
The precise knowledge of the subunit assembly process of NMDA receptors (NMDA-Rs) is essential to understand the receptor architecture and underlying mechanism of channel function. Because NMDA-Rs are obligatory heterotetramers requiring the GluN1 subunit, it is critical to investigate how GluN1 and GluN2 type subunits coassemble into tetramers. By combining approaches in cell biology, biochemistry, single particle electron microscopy, and x-ray crystallography, we report the mechanisms and phenotypes of mutant GluN1 subunits that are defective in receptor maturation. The T110A mutation in the N-terminal domain (NTD) of the GluN1 promotes heterodimerization between the NTDs of GluN1 and GluN2, whereas the Y109C mutation in the adjacent residue stabilizes the homodimer of the NTD of GluN1. The crystal structure of the NTD of GluN1 revealed the mechanism underlying the biochemical properties of these mutants. Effects of these mutations on the maturation of heteromeric NMDA-Rs were investigated using a receptor trafficking assay. Our results suggest that the NTDs of the GluN1 subunit initially form homodimers and the subsequent dimer dissociation is critical for forming heterotetrameric NMDA-Rs containing GluN2 subunits, defining a molecular determinant for receptor assembly. The domain arrangement of the dimeric NTD of GluN1 is unique among the ionotropic glutamate receptors and predicts that the structure and mechanism around the NTDs of NMDA-Rs are different from those of the homologous AMPA and kainate receptors.
Assuntos
Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Linhagem Celular , Células Cultivadas , Cromatografia em Gel , Cristalografia por Raios X , Humanos , Conformação Proteica , Subunidades Proteicas/química , Receptores de N-Metil-D-Aspartato/químicaRESUMO
Mistic is a small Bacillus subtilis protein which is of current interest to the field of structural biology and biochemistry because of its unique ability to increase integral membrane protein yields in Escherichia coli expression. Using the osmosensing histidine kinase receptor, EnvZ, an E. coli two-component system, and its cytoplasmic cognate response regulator, OmpR, we provide the first evidence that a Mistic-fused integral membrane protein maintains functionality both in vitro and in vivo. When the purified and detergent-solubilized receptor EnvZ is fused to Mistic, it maintains the ability to autophosphorylate on residue His(243) and phosphotransfers to residue Asp(55) located on OmpR. Functionality was also observed in vivo by means of a ß-galactosidase assay in which RU1012 [Φ(ompC-lacZ)10-15, ΔenvZ::Km(r)] cells transformed with Mistic-fused EnvZ led to an increase in downstream signal transduction events detected by the activation of ompC gene expression. These findings illustrate that Mistic preserves the functionality of the Mistic-fused cargo protein and thus provides a beneficial alternate approach to study integral membrane proteins not only by improving expression levels but also for direct use in functional characterization.
Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Modelos Biológicos , Modelos Moleculares , Complexos Multienzimáticos/genética , Porinas/química , Porinas/genética , Porinas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/metabolismoRESUMO
Two-component systems (TCS) involving the His-Asp phosphotransfer are commonly utilized for signal transduction in prokaryotes in which the two essential components are a sensor histidine kinase (HK) receptor and a response regulator (RR). Despite great efforts in structural and functional characterization of signal perception mechanisms, the exact signaling mechanisms remain elusive for many TCSs. Mimicking the natural TCS signaling pathways, chimeric receptor kinases and response regulators have been constructed through the process of swapping modular domains of related TCSs. To design chimeras with new signaling pathways, domains from different proteins that have little relationship at the primary structural level but carrying desirable functional properties can be conjoined to engineer novel TCSs. These chimeras maintain the ability to respond to environmental stimulants by regulating protein phosphorylation to produce downstream output signals. Depending on the nature of external signals, chimeric TCSs can serve as a novel tool not only to examine the natural signaling mechanisms in TCSs, but also for industrial and clinical applications.
Assuntos
Proteínas de Escherichia coli/metabolismo , Engenharia de Proteínas/métodos , Proteínas Quinases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Quimiorreceptoras/química , Células Quimiorreceptoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Histidina Quinase , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas Quinases/química , Proteínas Quinases/genética , Receptores de Superfície Celular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Técnicas do Sistema de Duplo-HíbridoRESUMO
CC chemokine ligand 14, CCL14, is a human CC chemokine that is of recent interest because of its natural ability, upon proteolytic processing of the first eight NH2-terminal residues, to bind to and signal through the human immunodeficiency virus type-1 (HIV-1) co-receptor, CC chemokine receptor 5 (CCR5). We report X-ray crystallographic structures of both full-length CCL14 and signaling-active, truncated CCL14 [9-74] determined at 2.23 and 1.8 A, respectively. Although CCL14 and CCL14 [9-74] differ in their ability to bind CCR5 for biological signaling, we find that the NH2-terminal eight amino acids (residues 1 through 8) are completely disordered in CCL14 and both show the identical mode of the dimeric assembly characteristic of the CC type chemokine structures. However, analytical ultracentrifugation studies reveal that the CCL14 is stable as a dimer at a concentration as low as 100 nM, whereas CCL14 [9-74] is fully monomeric at the same concentration. By the same method, the equilibrium between monomers of CCL14 [9-74] and higher order oligomers is estimated to be of EC1,4 = 4.98 microM for monomer-tetramer conversion. The relative instability of CCL14 [9-74] oligomers as compared to CCL14 is also reflected in the Kd's that are estimated by the surface plasmon resonance method to be approximately 9.84 and 667 nM for CCL14 and CCL14 [9-74], respectively. This approximately 60-fold difference in stability at a physiologically relevant concentration can potentially account for their different signaling ability. Functional data from the activity assays by intracellular calcium flux and inhibition of CCR5-mediated HIV-1 entry show that only CCL14 [9-74] is fully active at these near-physiological concentrations where CCL14 [9-74] is monomeric and CCL14 is dimeric. These results together suggest that the ability of CCL14 [9-74] to monomerize can play a role for cellular activation.