Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 102: 106721, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103370

RESUMO

Most ultrasound-based processes root in empirical approaches. Because nearly all advances have been conducted in aqueous systems, there exists a paucity of information on sonoprocessing in other solvents, particularly ionic liquids (ILs). In this work, we modelled an ultrasonic horn-type sonoreactor and investigated the effects of ultrasound power, sonotrode immersion depth, and solvent's thermodynamic properties on acoustic cavitation in nine imidazolium-based and three pyrrolidinium-based ILs. The model accounts for bubbles, acoustic impedance mismatch at interfaces, and treats the ILs as incompressible, Newtonian, and saturated with argon. Following a statistical analysis of the simulation results, we determined that viscosity and ultrasound input power are the most significant variables affecting the intensity of the acoustic pressure field (P), the volume of cavitation zones (V), and the magnitude of the maximum acoustic streaming surface velocity (u). V and u increase with the increase of ultrasound input power and the decrease in viscosity, whereas the magnitude of negative P decreases as ultrasound power and viscosity increase. Probe immersion depth positively correlates with V, but its impact on P and u is insignificant. 1-alkyl-3-methylimidazolium-based ILs yielded the largest V and the fastest acoustic jets - 0.77 cm3 and 24.4 m s-1 for 1-ethyl-3-methylimidazolium chloride at 60 W. 1-methyl-3-(3-sulfopropyl)-imidazolium-based ILs generated the smallest V and lowest u - 0.17 cm3 and 1.7 m s-1 for 1-methyl-3-(3-sulfopropyl)-imidazolium p-toluene sulfonate at 20 W. Sonochemiluminescence experiments validated the model.

2.
Heliyon ; 5(3): e01243, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30957034

RESUMO

[This corrects the article DOI: 10.1016/j.heliyon.2017.e00300.].

3.
Heliyon ; 3(5): e00300, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28560354

RESUMO

Databases catalogue the corpus of research literature into scientific categories and report classes of bibliometric data such as the number of citations to articles, the number of authors, journals, funding agencies, institutes, references, etc. The number of articles and citations in a category are gauges of productivity and scientific impact but a quantitative basis to compare researchers between categories is limited. Here, we compile a list of bibliometric indicators for 236 science categories and citation rates of the 500 most cited articles of each category. The number of citations per paper vary by several orders of magnitude and are highest in multidisciplinary sciences, general internal medicine, and biochemistry and lowest in literature, poetry, and dance. A regression model demonstrates that citation rates to the top articles in each category increase with the square root of the number of articles in a category and decrease proportionately with the age of the references: articles in categories that cite recent research are also cited more frequently. The citation rate correlates positively with the number of funding agencies that finance the research. The category h-index correlates with the average number of cites to the top 500 ranked articles of each category ([Formula: see text]). Furthermore, only a few journals publish the top 500 cited articles in each category: four journals publish 60% ([Formula: see text]) of these and ten publish 81% ([Formula: see text]).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA