Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Discov ; : OF1-OF24, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593348

RESUMO

RAS-driven cancers comprise up to 30% of human cancers. RMC-6236 is a RAS(ON) multi-selective noncovalent inhibitor of the active, GTP-bound state of both mutant and wild-type variants of canonical RAS isoforms with broad therapeutic potential for the aforementioned unmet medical need. RMC-6236 exhibited potent anticancer activity across RAS-addicted cell lines, particularly those harboring mutations at codon 12 of KRAS. Notably, oral administration of RMC-6236 was tolerated in vivo and drove profound tumor regressions across multiple tumor types in a mouse clinical trial with KRASG12X xenograft models. Translational PK/efficacy and PK/PD modeling predicted that daily doses of 100 mg and 300 mg would achieve tumor control and objective responses, respectively, in patients with RAS-driven tumors. Consistent with this, we describe here objective responses in two patients (at 300 mg daily) with advanced KRASG12X lung and pancreatic adenocarcinoma, respectively, demonstrating the initial activity of RMC-6236 in an ongoing phase I/Ib clinical trial (NCT05379985). SIGNIFICANCE: The discovery of RMC-6236 enables the first-ever therapeutic evaluation of targeted and concurrent inhibition of canonical mutant and wild-type RAS-GTP in RAS-driven cancers. We demonstrate that broad-spectrum RAS-GTP inhibition is tolerable at exposures that induce profound tumor regressions in preclinical models of, and in patients with, such tumors.

2.
Nature ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589574

RESUMO

RAS oncogenes (collectively NRAS, HRAS and especially KRAS) are among the most frequently mutated genes in cancer, with common driver mutations occurring at codons 12, 13 and 611. Small molecule inhibitors of the KRAS(G12C) oncoprotein have demonstrated clinical efficacy in patients with multiple cancer types and have led to regulatory approvals for the treatment of non-small cell lung cancer2,3. Nevertheless, KRASG12C mutations account for only around 15% of KRAS-mutated cancers4,5, and there are no approved KRAS inhibitors for the majority of patients with tumours containing other common KRAS mutations. Here we describe RMC-7977, a reversible, tri-complex RAS inhibitor with broad-spectrum activity for the active state of both mutant and wild-type KRAS, NRAS and HRAS variants (a RAS(ON) multi-selective inhibitor). Preclinically, RMC-7977 demonstrated potent activity against RAS-addicted tumours carrying various RAS genotypes, particularly against cancer models with KRAS codon 12 mutations (KRASG12X). Treatment with RMC-7977 led to tumour regression and was well tolerated in diverse RAS-addicted preclinical cancer models. Additionally, RMC-7977 inhibited the growth of KRASG12C cancer models that are resistant to KRAS(G12C) inhibitors owing to restoration of RAS pathway signalling. Thus, RAS(ON) multi-selective inhibitors can target multiple oncogenic and wild-type RAS isoforms and have the potential to treat a wide range of RAS-addicted cancers with high unmet clinical need. A related RAS(ON) multi-selective inhibitor, RMC-6236, is currently under clinical evaluation in patients with KRAS-mutant solid tumours (ClinicalTrials.gov identifier: NCT05379985).

3.
Proc Natl Acad Sci U S A ; 119(22): e2200568119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35588144

RESUMO

Cyclic dinucleotides (CDN) and Toll-like receptor (TLR) ligands mobilize antitumor responses by natural killer (NK) cells and T cells, potentially serving as complementary therapies to immune checkpoint therapy. In the clinic thus far, however, CDN therapy targeting stimulator of interferon genes (STING) protein has yielded mixed results, perhaps because it initiates responses potently but does not provide signals to sustain activation and proliferation of activated cytotoxic lymphocytes. To improve efficacy, we combined CDN with a half life-extended interleukin-2 (IL-2) superkine, H9-MSA (mouse serum albumin). CDN/H9-MSA therapy induced dramatic long-term remissions of the most difficult to treat major histocompatibility complex class I (MHC I)­deficient and MHC I+ tumor transplant models. H9-MSA combined with CpG oligonucleotide also induced potent responses. Mechanistically, tumor elimination required CD8 T cells and not NK cells in the case of MHC I+ tumors and NK cells but not CD8 T cells in the case of MHC-deficient tumors. Furthermore, combination therapy resulted in more prolonged and more intense NK cell activation, cytotoxicity, and expression of cytotoxic effector molecules in comparison with monotherapy. Remarkably, in a primary autochthonous sarcoma model that is refractory to PD-1 checkpoint therapy, the combination of CDN/H9-MSA with checkpoint therapy yielded long-term remissions in the majority of the animals, mediated by T cells and NK cells. This combination therapy has the potential to activate responses in tumors resistant to current therapies and prevent MHC I loss accompanying acquired resistance of tumors to checkpoint therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Antígenos de Histocompatibilidade Classe I , Imunoterapia , Interleucina-2 , Proteínas de Membrana , Neoplasias , Nucleotídeos Cíclicos , Oligodesoxirribonucleotídeos , Albumina Sérica , Animais , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoterapia/métodos , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Membrana/agonistas , Camundongos , Neoplasias/genética , Neoplasias/terapia , Nucleotídeos Cíclicos/uso terapêutico , Oligodesoxirribonucleotídeos/uso terapêutico , Albumina Sérica/uso terapêutico
4.
NAR Genom Bioinform ; 2(2): lqaa016, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32215369

RESUMO

Cancer cell lines are not homogeneous nor are they static in their genetic state and biological properties. Genetic, transcriptional and phenotypic diversity within cell lines contributes to the lack of experimental reproducibility frequently observed in tissue-culture-based studies. While cancer cell line heterogeneity has been generally recognized, there are no studies which quantify the number of clones that coexist within cell lines and their distinguishing characteristics. We used a single-cell DNA sequencing approach to characterize the cellular diversity within nine gastric cancer cell lines and integrated this information with single-cell RNA sequencing. Overall, we sequenced the genomes of 8824 cells, identifying between 2 and 12 clones per cell line. Using the transcriptomes of more than 28 000 single cells from the same cell lines, we independently corroborated 88% of the clonal structure determined from single cell DNA analysis. For one of these cell lines, we identified cell surface markers that distinguished two subpopulations and used flow cytometry to sort these two clones. We identified substantial proportions of replicating cells in each cell line, assigned these cells to subclones detected among the G0/G1 population and used the proportion of replicating cells per subclone as a surrogate of each subclone's growth rate.

5.
J Exp Med ; 215(6): 1693-1708, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29769248

RESUMO

In colorectal cancer, signaling pathways driving tumor progression are promising targets for systemic therapy. Besides WNT and MAPK signaling, activation of NOTCH signaling is found in most tumors. Here, we demonstrate that high NOTCH activity marks a distinct colon cancer cell subpopulation with low levels of WNT and MAPK activity and with a pronounced epithelial phenotype. Therapeutic targeting of MAPK signaling had limited effects on tumor growth and caused expansion of tumor cells with high NOTCH activity, whereas upon targeting NOTCH signaling, tumor cells with high MAPK activity prevailed. Lineage-tracing experiments indicated high plasticity between both tumor cell subpopulations as a mechanism for treatment resistance. Combined targeting of NOTCH and MAPK had superior therapeutic effects on colon cancer growth in vivo. These data demonstrate that tumor cells may evade systemic therapy through tumor cell plasticity and provide a new rationale for simultaneous targeting of different colon cancer cell subpopulations.


Assuntos
Plasticidade Celular , Neoplasias do Colo/patologia , Sistema de Sinalização das MAP Quinases , Receptores Notch/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Progressão da Doença , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Células HEK293 , Humanos , Camundongos , Terapia de Alvo Molecular , Fenótipo , Prognóstico , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Clin Cancer Res ; 24(8): 1974-1986, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29391352

RESUMO

Purpose: Colorectal cancers are composed of phenotypically different tumor cell subpopulations within the same core genetic background. Here, we identify high expression of the TALE transcription factor PBX3 in tumor cells undergoing epithelial-mesenchymal transition (EMT), analyze PBX3 regulation, and determine clinical associations in colorectal cancer.Experimental design: We used transcriptomic and in situ analyses to identify PBX3 expression in colorectal cancer and cell biology approaches to determine its regulation and function. Clinical associations were analyzed in independent tissue collections and gene expression datasets of colorectal cancers with recorded follow-up data.Results: PBX3 was expressed in tumor cells with high WNT activity undergoing EMT at the leading tumor edge of colorectal cancers, whereas stromal cells were PBX3 negative. PBX3 expression was induced by WNT activation and by the EMT transcription factors SNAIL and ZEB1, whereas these effects were mediated indirectly through microRNA miR-200. PBX3 was required for a full EMT phenotype in colon cancer cells. On the protein level, PBX3 expression indicated poor cancer-specific and disease-free survival in a cohort of 244 UICC stage II colorectal cancers, and was associated with metastasis in a case-control collection consisting of 90 cases with or without distant metastasis. On the mRNA level, high PBX3 expression was strongly linked to poor disease-free survival.Conclusions: PBX3 is a novel indicator of EMT in colorectal cancer, part of an EMT regulatory network, and a promising prognostic predictor that may aid in therapeutic decision making for patients with colorectal cancer. Clin Cancer Res; 24(8); 1974-86. ©2018 AACR.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas Proto-Oncogênicas/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Prognóstico , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo
7.
Nat Commun ; 8(1): 1406, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127276

RESUMO

Colon cancers are composed of phenotypically heterogeneous tumor cell subpopulations with variable expression of putative stem cell and differentiation antigens. While in normal colonic mucosa, clonal repopulation occurs along differentiation gradients from crypt base toward crypt apex, the clonal architecture of colon cancer and the relevance of tumor cell subpopulations for clonal outgrowth are poorly understood. Using a multicolor lineage tracing approach in colon cancer xenografts that reflect primary colon cancer architecture, we here demonstrate that clonal outgrowth is mainly driven by tumor cells located at the leading tumor edge with clonal axis formation toward the tumor center. While our findings are compatible with lineage outgrowth in a cancer stem cell model, they suggest that in colorectal cancer tumor cell position may be more important for clonal outgrowth than tumor cell phenotype.


Assuntos
Linhagem da Célula , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antígenos de Diferenciação/metabolismo , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Linhagem da Célula/imunologia , Células Clonais/imunologia , Células Clonais/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Xenoenxertos , Humanos , Imuno-Histoquímica , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microscopia de Fluorescência , Transplante de Neoplasias , Células-Tronco Neoplásicas/imunologia
8.
Cancer Res ; 77(7): 1763-1774, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202525

RESUMO

About 40% of colorectal cancers have mutations in KRAS accompanied by downstream activation of MAPK signaling, which promotes tumor invasion and progression. Here, we report that MAPK signaling shows strong intratumoral heterogeneity and unexpectedly remains regulated in colorectal cancer irrespective of KRAS mutation status. Using primary colorectal cancer tissues, xenograft models, and MAPK reporter constructs, we showed that tumor cells with high MAPK activity resided specifically at the leading tumor edge, ceased to proliferate, underwent epithelial-mesenchymal transition (EMT), and expressed markers related to colon cancer stem cells. In KRAS-mutant colon cancer, regulation of MAPK signaling was preserved through remaining wild-type RAS isoforms. Moreover, using a lineage tracing strategy, we provide evidence that high MAPK activity marked a progenitor cell compartment of growth-fueling colon cancer cells in vivo Our results imply that differential MAPK signaling balances EMT, cancer stem cell potential, and tumor growth in colorectal cancer. Cancer Res; 77(7); 1763-74. ©2017 AACR.


Assuntos
Neoplasias Colorretais/enzimologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Mutação , Células-Tronco Neoplásicas/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem da Célula , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Via de Sinalização Wnt/fisiologia
9.
Clin Cancer Res ; 23(11): 2769-2780, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903678

RESUMO

Purpose: Constitutively active WNT signaling is a hallmark of colorectal cancers and a driver of malignant tumor progression. Therapeutic targeting of WNT signaling is difficult due to high pathway complexity and its role in tissue homeostasis. Here, we identify the transcription factor ADNP as a pharmacologically inducible repressor of WNT signaling in colon cancer.Experimental Design: We used transcriptomic, proteomic, and in situ analyses to identify ADNP expression in colorectal cancer and cell biology approaches to determine its function. We induced ADNP expression in colon cancer xenografts by low-dose ketamine in vivo Clinical associations were determined in a cohort of 221 human colorectal cancer cases.Results: ADNP was overexpressed in colon cancer cells with high WNT activity, where it acted as a WNT repressor. Silencing ADNP expression increased migration, invasion, and proliferation of colon cancer cells and accelerated tumor growth in xenografts in vivo Treatment with subnarcotic doses of ketamine induced ADNP expression, significantly inhibited tumor growth, and prolonged survival of tumor-bearing animals. In human patients with colon cancer, high ADNP expression was linked to good prognosis.Conclusions: Our findings indicate that ADNP is a tumor suppressor and promising prognostic marker, and that ketamine treatment with ADNP induction is a potential therapeutic approach that may add benefit to current treatment protocols for patients with colorectal cancer. Clin Cancer Res; 23(11); 2769-80. ©2016 AACR.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Proteômica , Animais , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Ketamina/uso terapêutico , Camundongos , Terapia de Alvo Molecular , Regiões Promotoras Genéticas , Via de Sinalização Wnt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncotarget ; 7(21): 31350-60, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27120783

RESUMO

Colorectal cancers show significant tumor cell heterogeneity within the same core genetic background. Epithelial-mesenchymal transition (EMT) is an important functional aspect of this heterogeneity and hallmark of colorectal cancer progression. Here, we identify CYB5R1, an enzyme involved in oxidative stress protection and drug metabolism, as an indicator of EMT in colon cancer. We demonstrate high CYB5R1 expression in colorectal cancer cells undergoing EMT at the infiltrative tumor edge and reveal an extraordinarily strong association of CYB5R1 expression with two core EMT gene expression signatures in a large independent colon cancer data set from The Cancer Genome Atlas (TCGA). Furthermore, we demonstrate that CYB5R1 is required for an infiltrative tumor cell phenotype, and robustly linked with poor prognosis in colorectal cancer. Our findings have important implications for colon cancer cells undergoing EMT and may be exploited for diagnostic and therapeutic purposes.


Assuntos
Neoplasias do Colo/genética , Citocromo-B(5) Redutase/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/cirurgia , Citocromo-B(5) Redutase/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Análise Multivariada , Prognóstico , Interferência de RNA , Resultado do Tratamento
11.
PLoS One ; 9(8): e104284, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111606

RESUMO

Colonic crypts are stereotypical structures with distinct stem cell, proliferating, and differentiating compartments. Colorectal cancers derive from colonic crypt epithelia but, in contrast, form morphologically disarrayed glands. In this study, we investigated to which extent colorectal cancers phenocopy colonic crypt architecture and thus preserve structural organization of the normal intestinal epithelium. A subset of colon cancers showed crypt-like compartments with high WNT activity and nuclear ß-Catenin at the leading tumor edge, adjacent proliferation, and enhanced Cytokeratin 20 expression in most differentiated tumor epithelia of the tumor center. This architecture strongly depended on growth conditions, and was fully reproducible in mouse xenografts of cultured and primary colon cancer cells. Full crypt-like organization was associated with low tumor grade and was an independent prognostic marker of better survival in a collection of 221 colorectal cancers. Our findings suggest that full activation of preserved intestinal morphogenetic programs in colon cancer requires in vivo growth environments. Furthermore, crypt-like architecture was linked with less aggressive tumor biology, and may be useful to improve current colon cancer grading schemes.


Assuntos
Colo/citologia , Colo/patologia , Neoplasias Colorretais/patologia , Idoso , Animais , Células CACO-2 , Transformação Celular Neoplásica , Feminino , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Fenótipo , Análise de Sobrevida
12.
Cell Commun Signal ; 11(1): 27, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23594441

RESUMO

BACKGROUND: The p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling. RESULTS: We reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity. CONCLUSIONS: In summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA