Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 134(2): 603-620, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33146737

RESUMO

KEY MESSAGE: Investigation of resource availability on allele effects for four yield component quantitative trait loci provides guidance for the improvement of grain yield in high and low yielding environments. A greater understanding of grain yield (GY) and yield component traits in spring wheat may increase selection efficiency for improved GY in high and low yielding environments. The objective of this study was to determine allelic response of four yield component quantitative trait loci (QTL) to variable resource levels which were manipulated by varying intraspecific plant competition and seeding density. The four QTL investigated in this study had been previously identified as impacting specific yield components. They included QTn.mst-6B for productive tiller number (PTN), WAPO-A1 for spikelet number per spike (SNS), and QGw.mst-3B and TaGW2-A1 for kernel weight (KWT). Near-isogenic lines for each of the four QTL were grown in multiple locations with three competition (border, no-border and space-planted) and two seeding densities (normal 216 seeds m-2 and low 76 seeds m-2). Allele response at QTn.mst-6B was driven by changes in resource availability, whereas allele response at WAPO-A1 and TaGW2-A1 was relatively unaffected by resource availability. The QTn.mst-6B.1 allele at QTn.mst-6B conferred PTN plasticity resulting in significant GY increases in high resource environments. The gw2-A1 allele at TaGW2-A1 significantly increased KWT, SNS and GPC offering a source of GY improvement without negatively impacting end-use quality. QGw.mst-3B allelic variation did not significantly impact KWT but did significantly impact SPS. Treatment effects in both experiments often resulted in significant positive impacts on GY and yield component traits when resource availability was increased. Results provide guidance for leveraging yield component QTL to improve GY performance in high- and low-yield environments.


Assuntos
Cromossomos de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Sementes/genética , Triticum/crescimento & desenvolvimento , Triticum/genética , Alelos , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Fenótipo , Melhoramento Vegetal , Proteínas de Plantas/genética , Estações do Ano , Sementes/metabolismo , Triticum/metabolismo
2.
Theor Appl Genet ; 132(8): 2195-2207, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31049630

RESUMO

Wheat landrace accessions were chosen from areas of the world with historical European wheat stem sawfly (Cephus pygmaeus L.) selection pressure to develop six recombinant inbred line (RIL) populations. Molecular maps were constructed, and resistance due to antibiosis and antixenosis was assessed at sites in Montana naturally infested by Cephus cinctus Norton, the wheat stem sawfly (WSS). Novel QTLs were identified along with QTL previously identified in elite germplasm. A newly identified QTL on chromosome 1B provided a new source for pith-filled solid stems. An allele for resistance on chromosome 4A unrelated to solid stems was identified in four of the six RIL populations. A landrace from Turkey, PI 166471, contained alleles at three QTLs causing high levels of larval mortality. None of the QTLs were related to stem solidness, but their combined effect provided resistance similar to that observed in a solid-stemmed check cultivar. These results show the utility of genetic populations derived from geographically targeted landrace accessions to identify new alleles for insect resistance. New PCR-based molecular markers were developed for introgression of novel alleles for WSS resistance into elite lines. Comparison of results with previous analysis of elite cultivars addresses changes in allele frequencies during the wheat breeding process.


Assuntos
Resistência à Doença/genética , Himenópteros/fisiologia , Endogamia , Doenças das Plantas/genética , Caules de Planta/parasitologia , Recombinação Genética/genética , Triticum/genética , Triticum/parasitologia , Animais , Análise Fatorial , Fenótipo , Doenças das Plantas/parasitologia , Locos de Características Quantitativas/genética
3.
G3 (Bethesda) ; 9(6): 1999-2006, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31015195

RESUMO

The wheat stem sawfly (WSS) (Cephus cinctus Norton) is a major yield-reducing pest of wheat (Triticum aestivum L.). Varieties with pith-filled, or solid, stems provide a measure of resistance by inhibiting larval survival inside the stem. Durum wheat (Triticum turgidum L.) has resistance to the wheat stem sawfly even in the absence of known genes for stem solidness. To determine the genetic basis of resistance in durum wheat, a susceptible durum wheat, PI 41353, was identified from among 1,211 landrace accessions from around the world screened in WSS-infested sites. A recombinant inbred line (RIL) population of 105 individuals was developed from a cross of PI 41353 with a typically resistant variety, Pierce. The RIL were screened in a total of three WSS-infested locations in Montana over a two year period. A genetic map was constructed with 2,867 SNP-based markers. A quantitative trait locus (QTL) analysis identified six QTL associated with resistance. An allele from resistant cultivar Pierce at a QTL on chromosome 3A, Qss.msub-3AL, caused a 25% reduction in stem cutting. Assessment of near-isogenic lines that varied for alleles at Qss.msub-3AL showed that the Pierce allele was also associated with higher stem solidness as measured early in stem development, which is a critical stage for WSS oviposition and larval development. Stem solidness of Pierce and other resistant durum wheat lines largely disappeared later in plant development. Results suggest a genetic mechanism for WSS resistance observed in durum wheat, and provide an additional source of WSS resistance for hexaploid bread wheat.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Locos de Características Quantitativas , Característica Quantitativa Herdável , Triticum/genética , Triticum/parasitologia , Alelos , Mapeamento Cromossômico , Resistência à Doença/genética , Ligação Genética , Genótipo , Interações Hospedeiro-Parasita , Polimorfismo de Nucleotídeo Único
4.
Plant J ; 95(6): 1039-1054, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29952048

RESUMO

Recombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence-based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO). Genome-wide recombination rate variation was mostly defined by rare alleles with small effects together explaining up to 48.6% of variation. Most QTL were additive and showed predominantly trans-acting effects. The QTL affecting the proximal COs also acted additively without increasing the frequency of distal COs. We showed that the regions with decreased recombination carry more single nucleotide polymorphisms (SNPs) with possible deleterious effects than the regions with a high recombination rate. Therefore, our study offers insights into the genetic basis of recombination rate variation in wheat and its effect on the distribution of deleterious SNPs across the genome. The identified trans-acting additive QTL can be utilized to manipulate CO frequency and distribution in the large polyploid wheat genome opening the possibility to improve the efficiency of gene pyramiding and reducing the deleterious genetic load in the low-recombining pericentromeric regions of chromosomes.


Assuntos
Poliploidia , Recombinação Genética/genética , Triticum/genética , Alelos , Mapeamento Cromossômico/métodos , Variação Genética/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
5.
J Econ Entomol ; 111(2): 923-930, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29474649

RESUMO

Most barley cultivars have some degree of resistance to the wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae). Damage caused by WSS is currently observed in fields of barley grown in the Northern Great Plains, but the impact of WSS damage among cultivars due to genetic differences within the barley germplasm is not known. Specifically, little is known about the mechanisms underlying WSS resistance in barley. We characterized WSS resistance in a subset of the spring barley CAP (Coordinated Agricultural Project) germplasm panel containing 193 current and historically important breeding lines from six North American breeding programs. Panel lines were grown in WSS infested fields for two consecutive years. Lines were characterized for stem solidness, stem cutting, WSS infestation (antixenosis), larval mortality (antibiosis), and parasitism (indirect plant defense). Variation in resistance to WSS in barley was compared to observations made for solid-stemmed resistant and hollow-stemmed susceptible wheat lines. Results indicate that both antibiosis and antixenosis are involved in the resistance of barley to the WSS, but antibiosis seems to be more prevalent. Almost all of the barley lines had greater larval mortality than the hollow-stemmed wheat lines, and only a few barley lines had mortality as low as that observed in the solid-stemmed wheat line. Since barley lines lack solid stems, it is apparent that barley has a different form of antibiosis. Our results provide information for use of barley in rotation to control the WSS and may provide a basis for identification of new approaches for improving WSS resistance in wheat.


Assuntos
Antibiose , Cadeia Alimentar , Herbivoria , Hordeum/fisiologia , Himenópteros/fisiologia , Animais , Hordeum/crescimento & desenvolvimento , Himenópteros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Montana , Estados Unidos
6.
Theor Appl Genet ; 130(1): 187-197, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27709252

RESUMO

KEY MESSAGE: Genetic diversity in quantitative loci associated with plant traits used by insects as cues for host selection can influence oviposition behavior and maternal choice. Host plant selection for oviposition is an important determinant of progeny performance and survival for phytophagous insects. Specific cues from the plant influence insect oviposition behavior; but, to date, no set of host plant quantitative trait loci (QTLs) have been shown to have an effect on behavioral sequences leading to oviposition. Three QTLs in wheat (Triticum aestivum L.) have been identified as influencing resistance to the wheat stem sawfly (WSS) (Cephus cinctus Norton). Wheat near-isogenic lines (NILs) for each of the three QTLs were used to test whether foraging WSS were able to discriminate variation in plant cues resulting from allelic changes. A QTL on chromosome 3B (Qss-msub-3BL) previously associated with stem solidness and larval antibiosis was shown to affect WSS oviposition behavior, host preference, and field infestation. Decreased preference for oviposition was also related to a QTL allele on chromosome 2D (Qwss.msub-2D). A QTL on chromosome 4A (Qwss.msub-4A.1) affected host plant attractiveness to foraging females, but did not change oviposition preference after females landed on the stem. These findings show that oviposition decisions regarding potential plant hosts require WSS females to discriminate signals from the plant associated with allelic variation at host plant quantitative loci. Allele types in a host plant QTL associated with differential survival of immature progeny can affect maternal choices for oviposition. The multidisciplinary approach used here may lead to the identification of plant genes with important community consequences, and may complement the use of antibiosis due to solid stems to control the wheat stem sawfly in agroecosystems.


Assuntos
Himenópteros/fisiologia , Oviposição , Locos de Características Quantitativas , Triticum/genética , Alelos , Animais , Feminino , Larva , Caules de Planta/fisiologia , Triticum/fisiologia
7.
Phytopathology ; 106(11): 1352-1358, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27359266

RESUMO

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, can cause severe yield losses on susceptible wheat varieties and cultivars. Although stem rust can be controlled by the use of genetic resistance, population dynamics of P. graminis f. sp. tritici can frequently lead to defeat of wheat stem rust resistance genes. P. graminis f. sp. tritici race TKTTF caused a severe epidemic in Ethiopia on Ug99-resistant 'Digalu' in 2013 and 2014. The gene Sr11 confers resistance to race TKTTF and is present in 'Gabo 56'. We identified seven single-nucleotide polymorphism (SNP) markers linked to Sr11 from a cross between Gabo 56 and 'Chinese Spring' exploiting a 90K Infinium iSelect Custom beadchip. Five SNP markers were validated on a 'Berkut'/'Scalavatis' population that segregated for Sr11, using KBioscience competitive allele-specific polymerase chain reaction (KASP) assays. Two of the SNP markers, KASP_6BL_IWB10724 and KASP_6BL_IWB72471, were predictive of Sr11 among wheat genetic stocks, cultivars, and breeding lines from North America, Ethiopia, and Pakistan. These markers can be utilized to select for Sr11 in wheat breeding and to detect the presence of Sr11 in uncharacterized germplasm.


Assuntos
Basidiomycota/fisiologia , Resistência à Doença/genética , Ligação Genética , Doenças das Plantas/imunologia , Polimorfismo de Nucleotídeo Único/genética , Triticum/genética , Alelos , Cruzamento , Etiópia , Marcadores Genéticos/genética , Genótipo , América do Norte , Paquistão , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Caules de Planta/genética , Caules de Planta/imunologia , Caules de Planta/microbiologia , Plântula/genética , Plântula/imunologia , Plântula/microbiologia , Triticum/imunologia , Triticum/microbiologia
8.
Proc Natl Acad Sci U S A ; 99(3): 1724-9, 2002 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-11830676

RESUMO

Yield in cereals is a function of seed number and weight; both parameters are largely controlled by seed sink strength. The allosteric enzyme ADP-glucose pyrophosphorylase (AGP) plays a key role in regulating starch biosynthesis in cereal seeds and is likely the most important determinant of seed sink strength. Plant AGPs are heterotetrameric, consisting of two large and two small subunits. We transformed wheat (Triticum aestivum L.) with a modified form of the maize (Zea mays L.) Shrunken2 gene (Sh2r6hs), which encodes an altered AGP large subunit. The altered large subunit gives rise to a maize AGP heterotetramer with decreased sensitivity to its negative allosteric effector, orthophosphate, and more stable interactions between large and small subunits. The Sh2r6hs transgene was still functional after five generations in wheat. Developing seeds from Sh2r6hs transgenic wheat exhibited increased AGP activity in the presence of a range of orthophosphate concentrations in vitro. Transgenic Sh2r6hs wheat lines produced on average 38% more seed weight per plant. Total plant biomass was increased by 31% in Sh2r6hs plants. Results indicate increased availability and utilization of resources in response to enhanced seed sink strength, increasing seed yield, and total plant biomass.


Assuntos
Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Sementes/fisiologia , Triticum/fisiologia , Glucose-1-Fosfato Adenililtransferase , Cinética , Microclima , Plantas Geneticamente Modificadas , Mapeamento por Restrição , Transformação Genética , Triticum/enzimologia , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA