Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836277

RESUMO

Anode materials based on the TiO2 nanoparticles of different morphologies were prepared using the hydrothermal method and characterized by various techniques, such as X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and N2 absorption. The TiO2 nanoparticles prepared were used as anode materials for lithium-ion batteries (LIBs), and their electrochemical properties were tested using discharging/charging measurements. The results showed that the initial morphology of the nanoparticles plays a minor role in battery performance after the first few cycles and that better capacity was achieved for TiO2 nanobelt morphology. The sharp drop in the specific capacity of LIB during their first cycles is examined by considering changes in the morphology of TiO2 particles and their porosity properties in terms of size and connectivity. The performance of TiO2 anode materials has also been assessed by considering their phase.

2.
Beilstein J Org Chem ; 19: 582-592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180458

RESUMO

The C3-functionalization of furfural using homogeneous ruthenium catalysts requires the preinstallation of an ortho-directing imine group, as well as high temperatures, which did not allow scaling up, at least under batch conditions. In order to design a safer process, we set out to develop a continuous flow process specifically for the C3-alkylation of furfural (Murai reaction). The transposition of a batch process to a continuous flow process is often costly in terms of time and reagents. Therefore, we chose to proceed in two steps: the reaction conditions were first optimized using a laboratory-built pulsed-flow system to save reagents. The optimized conditions in this pulsed-flow mode were then successfully transferred to a continuous flow reactor. In addition, the versatility of this continuous flow device allowed both steps of the reaction to be carried out, namely the formation of the imine directing group and the C3-functionalization with some vinylsilanes and norbonene.

3.
J Am Chem Soc ; 145(12): 6671-6681, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36926855

RESUMO

Silica surface functionalization is often done through the condensation of functional silanes on silanols, silica surfaces' terminal groups. APTES, aminopropyltriethoxysilane, is widely used due to its assumed high reactivity with silanols, kinetically promoted by the catalytic action of the terminal amine function. Here, we revisit, based on a quantitative analysis by solid-state 29Si NMR, the assembly of this silane on silica surfaces to investigate whether its presence results from grafting, i.e., hetero-condensation with silanol groups or from homo-condensation of silane molecules in solution leading to polycondensates physisorbed on silica. We investigate the interaction of APTES with a crystalline layered silicate, ilerite, and with amorphous nonporous silica. We also studied a second silane, cyanopropyltrichlorosilane (CPTCS), terminated with a nitrile group. Our results undoubtedly prove that while CPTCS is grafted on the silica surface, the presence of APTES on silica and silicate materials is only marginally associated with silanol consumption. The analysis of the signal related to silicon atoms from silanes (Tn species) and those from silica (Qn species) allowed for the accurate estimation of the extent of homo-condensation vs grafting based on the ratio of T-O-T/Q-O-T siloxane bridges. These findings deeply question the well-established certainties on APTES assembly on silica that should no longer be seen as grafting of alkoxysilane by hetero-condensation with silanol groups but more accurately as a homo-condensed network of silanes, predominantly physisorbed on the surface but including some sparse anchoring points to the surface involving less than 6% of the overall silanol groups.

4.
Micromachines (Basel) ; 14(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36837943

RESUMO

TiO2 nanobelt bundles decorated with TiO2 aggregates were prepared using an easy and scalable hydrothermal method at various temperatures (170, 190, 210, and 230 °C). It was demonstrated that the synthesis temperature is a key parameter to tune the number of aggregates on the nanobelt surface. Prepared TiO2 aggregates and nanobelt bundles were used to design anode materials in which the aggregates regulated the pore size and connectivity of the interconnected nanobelt bundle structure. A galvanostatic technique was employed for the electrochemical characterization of TiO2 samples. Using TiO2 as a model material due to its small volume change during the cycling of lithium-ion batteries (LIBs), the relationship between the morphology of the anode materials and the capacity retention of the LIBs on cycling is discussed. It was clearly found that the size and connectivity of the pores and the specific surface area had a striking impact on the Li insertion behavior, lithium storage capability, and cycling performance of the batteries. The initial irreversible capacity was shown to increase as the specific surface area increased. As the pore size increased, the ability of the mesoporous anatase to release strain was stronger, resulting in better cycling stability. The TiO2 powder prepared at a temperature of 230 °C displayed the highest discharge and charge capacities (203.3 mAh/g and 140.8 mAh/g) and good cycling stability.

5.
Talanta ; 255: 124245, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36610258

RESUMO

We introduce here the engineering of nanobiosensors designed from gold nanorods coated with an ultrathin layer of silica (AuNR@SiO2) and biofunctionalized with antibodies for the Localized Surface Plasmon Resonance (LSPR) biosensing of proteins. Despite the outstanding properties of AuNRs, their use for LSPR biosensing is limited due to the presence of the surfactant cetyltrimethylammonium bromide (CTAB) - mandatory for their synthesis - which forms a strongly-bounded and positively-charged bilayer at their surface and significantly complicates their bio-functionalization. When coated with a thin layer of silica, these nanomaterials exhibit an improved sensitivity to refractive index change which augurs for better analytical performances. Here, we undertook an in-depth investigation of the biofunctionalization of AuNR@SiO2via three different routes to design and test a label-free LSPR biosensor operating in solution. In the first route, we took advantage of the negatively charged external silica shell to immobilize anti-rabbit IgG antibody by electrostatic physisorption. In the second and third routes, the silica surface was reacted with thiol or aldehyde terminated silanes, subsequently utilized to covalently attach anti-rabbit IgG antibody to the surface. The resulting nanoprobes were characterized by a wide range of physical methods (TEM, XPS, DLS, ELS and UV-Visible spectroscopy) then tested for the biosensing of rabbit-IgG. The three nanobiosensors maintain an excellent colloidal stability after analyte recognition and exhibit extremely high analytical performances in terms of specificity and dynamic range, with an LoD down to 12 ng/mL.


Assuntos
Técnicas Biossensoriais , Nanotubos , Ressonância de Plasmônio de Superfície/métodos , Ouro/química , Dióxido de Silício/química , Nanotubos/química , Imunoglobulina G
6.
Biosensors (Basel) ; 10(10)2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33080925

RESUMO

Nanoparticles made of coinage metals are well known to display unique optical properties stemming from the localized surface plasmon resonance (LSPR) phenomenon, allowing their use as transducers in various biosensing configurations. While most of the reports initially dealt with spherical gold nanoparticles owing to their ease of synthesis, the interest in gold nanorods (AuNR) as plasmonic biosensors is rising steadily. These anisotropic nanoparticles exhibit, on top of the LSPR band in the blue range common with spherical nanoparticles, a longitudinal LSPR band, in all respects superior, and in particular in terms of sensitivity to the surrounding media and LSPR-biosensing. However, AuNRs synthesis and their further functionalization are less straightforward and require thorough processing. In this paper, we intend to give an up-to-date overview of gold nanorods in LSPR biosensing, starting from a critical review of the recent findings on AuNR synthesis and the main challenges related to it. We further highlight the various strategies set up to coat AuNR with a silica shell of controlled thickness and porosity compatible with LSPR-biosensing. Then, we provide a survey of the methods employed to attach various bioreceptors to AuNR. Finally, the most representative examples of AuNR-based LSPR biosensors are reviewed with a focus put on their analytical performances.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ouro , Dióxido de Silício , Ressonância de Plasmônio de Superfície
7.
ChemSusChem ; 12(2): 511-517, 2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30637969

RESUMO

Alloying strategies are commonly used to design electrocatalysts that take on properties of their constituent elements. Herein, such a strategy is used to develop Zn-Cu alloyed electrodes with unique hierarchical porosity and tunable selectivity for CO2 versus H+ reduction. By varying the Zn/Cu ratio, tailored syngas mixtures are obtained without the production of other gaseous products, which is attributed to preferential CO- and H2 -forming pathways on the alloys. The syngas ratios are also significantly less sensitive to the applied potential in the alloys relative to pure metal equivalents; an essential quality when coupling electrocatalysis with renewable power sources that have fluctuating intensity. As such, industrially relevant syngas ratios are achieved at large currents (-60 mA) for extensive operating times (>9 h), demonstrating the potential of this strategy for fossil-free fuel production.

8.
Phys Chem Chem Phys ; 18(40): 27837-27847, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711694

RESUMO

Hydroxyapatites are increasingly used as heterogeneous catalysts since they present atypical behaviours for many acid base reactions. The aim of this study was to discuss the possible involvement of Ca2+ Lewis and/or PO-H Brønsted acid sites belonging to the hydroxyapatite system in the conversion of 2-methylbut-3-yn-1-ol, a model molecule that is known to account for the acid base properties, and of ethanol into n-butanol. A series of hydroxyapatite samples with similar bulk properties was prepared from a lone precipitation batch, but by varying the conditions of the washing and drying steps. Although the surface depth probed by XPS exhibited similar average composition, ISS analysis revealed a gradient of calcium concentration in the first surface layers. In fact, the different conditions of drying and washing resulted in a modulation of the relative amount of Ca2+ and PO-H accessible on the top surface, as revealed by the adsorption of the CO molecule monitored by FTIR. The conversion in the two alcohol molecules is linearly dependent on the nature of the acid base pairs involved: when accessible on the top surfaces, due to their stronger acidity, the Ca2+ Lewis acid sites are preferentially involved, but they are less efficient than PO-H, as illustrated by the linear decrease of the conversion levels with the increasing relative amount of accessible Ca2+ cations. It is thus concluded that PO-H sites enhance the performances of the catalysts for the two reactions, and that washing and drying conditions allowing us to decrease the calcium accessibility at the benefit of PO-H should be favoured.

9.
Chem Commun (Camb) ; 50(19): 2409-11, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24407379

RESUMO

Understanding the interactions between metal complexes and oxide surfaces is crucial to the synthesis of supported metal catalysts. Recently developed in situ techniques have made it possible to closely characterize the solid/liquid interface. For the first time, the adsorption of platinum complexes on alumina and silica has been probed using a quartz crystal microbalance; we were able to observe the adsorption of metal complexes in real time, and to observe the reversibility of this adsorption.

10.
Chemistry ; 14(20): 6142-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18494021

RESUMO

There is limited knowledge on the influence of the pore size on surface phenomena (adsorption, dissolution, precipitation, etc.) at the oxide/water interface and a better understanding of the space confinement in nanoscale pores should have practical implications in different areas, such as transport of contaminants in the environment or heterogeneous catalyst preparation, to name a few. To investigate the modifications of the oxide adsorption properties at the oxide/water interface in a confined environment, the surface acidobasic and ion adsorption properties of six different aluminas (5 porous commercial aluminas with pore diameters ranging from 25 to 200 A and 1 non-porous alumina) were determined by means of acid-base titration and Ni(II) adsorption. It is shown that the confinement has a moderate impact on the alumina adsorption capacity because all materials have similar surface charging behaviours and ion saturation coverages. However, a confined geometry has a much larger impact on the ion adsorption constants, which decrease drastically when the average pore diameter decreases below 200 A. These results are discussed in terms of nanoscale pore space confinement.


Assuntos
Óxido de Alumínio/química , Nanoestruturas/química , Óxidos/química , Água/química , Adsorção , Porosidade , Propriedades de Superfície
11.
Chemphyschem ; 8(18): 2636-42, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18058778

RESUMO

We use polyoxometalates as precursors for the preparation of heterogeneous catalysts. In the starting molecular precursor [{Ru(C6Me6)}(2)Mo5O18{Ru(C6Me6)(H2O)}], three ruthenium arene fragments are supported on a formally lacunary Lindqvist-type polyoxomolybdate. This species was introduced by incipient wetness impregnation into the porosity of a SBA-15-type mesoporous silica. The evolution of the system under reducing atmosphere is followed by several methods, such as temperature-programmed reduction (TPR), Raman, and X-ray absorption spectroscopy (XAS). The results indicate that the polyoxometalate structure is retained after grafting on silica and allows the stabilization of Ru(0) nanoparticles after reduction. The resulting system exhibits interesting catalytic activity in benzene hydrogenation.


Assuntos
Nanopartículas Metálicas/química , Molibdênio/química , Compostos Organometálicos/química , Rutênio/química , Dióxido de Silício/química , Absorciometria de Fóton/métodos , Benzeno/química , Catálise , Físico-Química/métodos , Análise de Fourier , Hidrogênio/química , Microscopia Eletrônica de Transmissão , Conformação Molecular , Análise Espectral Raman/métodos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA