RESUMO
BACKGROUND: Grip strength (GS) is associated to both multimorbidity and depression, however its possible moderating effect is unknown. This study aimed to investigate GS moderating effect on the association between multimorbidity and depression. METHODS: Data from SHARE wave 8 was used. Participant were 41457 middle-aged and older adults (17954 men) from 18 European countries. A regression analysis was conducted for the moderating effect of sex- and age-specific GS quartiles (W) on the association between number of chronic diseases (X1) or multimorbidity (X2) and depression symptoms (Y). RESULTS: More chronic diseases were associated with greater depressive symptomatology (men: B = 0.39, 95 % CI: 0.35, 0.42; women: B = 0.42, 95 % CI: 0.39, 0.45). On the other hand, being in a higher GS quartile was associated with fewer depression symptoms, and this association was stronger the higher the quartile was. Having a higher GS represented a decrease in depression symptoms associated with multimorbidity for men (quartile 1: B = 0.85, 95 % CI = 0.74, 0.95 vs. quartile 4: B = 0.49, 95 % CI = 0.38, 0.61) and women (quartile 1: B = 1.08, 95 %CI = 0.97, 1.19 vs. quartile 4: B = 0.59, 95 %CI: 0.47, 0.70). CONCLUSIONS: Strategies aiming to reduce the impact of multimorbidity on mental health should promote muscle-strengthening physical activity among middle-aged and older adults.
Assuntos
Depressão , Força da Mão , Multimorbidade , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Depressão/epidemiologia , Doença Crônica/epidemiologia , Europa (Continente)/epidemiologiaRESUMO
Intravenous (IV) iron-carbohydrate complexes are widely used nanoparticles (NPs) to treat iron deficiency anaemia, often associated with medical conditions such as chronic kidney disease, heart failure and various inflammatory conditions. Even though a plethora of physicochemical characterisation data and clinical studies are available for these products, evidence-based correlation between physicochemical properties of iron-carbohydrate complexes and clinical outcome has not fully been elucidated yet. Studies on other metal oxide NPs suggest that early interactions between NPs and blood upon IV injection are key to understanding how differences in physicochemical characteristics of iron-carbohydrate complexes cause variance in clinical outcomes. We therefore investigated the core-ligand structure of two clinically relevant iron-carbohydrate complexes, iron sucrose (IS) and ferric carboxymaltose (FCM), and their interactions with two structurally different human plasma proteins, human serum albumin (HSA) and fibrinogen, using a combination of cryo-scanning transmission electron microscopy (cryo-STEM), x-ray diffraction (XRD), small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS). Using this orthogonal approach, we defined the nano-structure, individual building blocks and surface morphology for IS and FCM. Importantly, we revealed significant differences in the surface morphology of the iron-carbohydrate complexes. FCM shows a localised carbohydrate shell around its core, in contrast to IS, which is characterised by a diffuse and dynamic layer of carbohydrate ligand surrounding its core. We hypothesised that such differences in carbohydrate morphology determine the interaction between iron-carbohydrate complexes and proteins and therefore investigated the NPs in the presence of HSA and fibrinogen. Intriguingly, IS showed significant interaction with HSA and fibrinogen, forming NP-protein clusters, while FCM only showed significant interaction with fibrinogen. We postulate that these differences could influence bio-response of the two formulations and their clinical outcome. In conclusion, our study provides orthogonal characterisation of two clinically relevant iron-carbohydrate complexes and first hints at their interaction behaviour with proteins in the human bloodstream, setting a prerequisite towards complete understanding of the correlation between physicochemical properties and clinical outcome.
Assuntos
Anemia Ferropriva , Maltose/análogos & derivados , Nanopartículas Metálicas , Humanos , Ferro/química , Espalhamento a Baixo Ângulo , Ligantes , Difração de Raios X , Compostos Férricos , Óxido de Ferro Sacarado/uso terapêutico , Anemia Ferropriva/tratamento farmacológico , Nanopartículas Metálicas/química , FibrinogênioRESUMO
Lipid nanoparticles (LNPs) are advanced core-shell particles for messenger RNA (mRNA) based therapies that are made of polyethylene glycol (PEG) lipid, distearoylphosphatidylcholine (DSPC), cationic ionizable lipid (CIL), cholesterol (chol), and mRNA. Yet the mechanism of pH-dependent response that is believed to cause endosomal release of LNPs is not well understood. Here, we show that eGFP (enhanced green fluorescent protein) protein expression in the mouse liver mediated by the ionizable lipids DLin-MC3-DMA (MC3), DLin-KC2-DMA (KC2), and DLinDMA (DD) ranks MC3 ≥ KC2 > DD despite similar delivery of mRNA per cell in all cell fractions isolated. We hypothesize that the three CIL-LNPs react differently to pH changes and hence study the structure of CIL/chol bulk phases in water. Using synchrotron X-ray scattering a sequence of ordered CIL/chol mesophases with lowering pH values are observed. These phases show isotropic inverse micellar, cubic Fd3m inverse micellar, inverse hexagonal [Formula: see text] and bicontinuous cubic Pn3m symmetry. If polyadenylic acid, as mRNA surrogate, is added to CIL/chol, excess lipid coexists with a condensed nucleic acid lipid [Formula: see text] phase. The next-neighbor distance in the excess phase shows a discontinuity at the Fd3m inverse micellar to inverse hexagonal [Formula: see text] transition occurring at pH 6 with distinctly larger spacing and hydration for DD vs. MC3 and KC2. In mRNA LNPs, DD showed larger internal spacing, as well as retarded onset and reduced level of DD-LNP-mediated eGFP expression in vitro compared to MC3 and KC2. Our data suggest that the pH-driven Fd3m-[Formula: see text] transition in bulk phases is a hallmark of CIL-specific differences in mRNA LNP efficacy.
Assuntos
Lipossomos , Nanopartículas , Animais , Camundongos , Nanopartículas/química , Micelas , Concentração de Íons de Hidrogênio , RNA Mensageiro/genética , RNA Mensageiro/química , RNA Interferente Pequeno/genéticaRESUMO
Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment. In solution, chemical and biophysical parameters that have an influence on the structure and dynamics of molecules can be varied and their effect on conformational changes can be monitored in time-resolved XFEL and SAXS experiments. We report here the collection of scattering form factors of proteins in solution using FEL X-rays. The form factors correspond to the scattering signal of the protein ensemble alone; the scattering contributions from the solvent and the instrument are separately measured and accurately subtracted. The experiment was done using a liquid jet for sample delivery. These results pave the way for time-resolved studies and measurements from dilute samples, capitalizing on the intense and short FEL X-ray pulses.
Assuntos
Elétrons , Proteínas , Espalhamento a Baixo Ângulo , Raios X , Difração de Raios X , Proteínas/química , LasersRESUMO
We present a generically applicable approach to determine an extensive set of size-dependent critical quality attributes inside nanoparticulate pharmaceutical products. By coupling asymmetrical-flow field-flow fractionation (AF4) measurements directly in-line with solution small angle X-ray scattering (SAXS), vital information such as (i) quantitative, absolute size distribution profiles, (ii) drug loading, (iii) size-dependent internal structures, and (iv) quantitative information on free drug is obtained. Here the validity of the method was demonstrated by characterizing complex mRNA-based lipid nanoparticle products. The approach is particularly applicable to particles in the size range of 100 nm and below, which is highly relevant for pharmaceutical products-both biologics and nanoparticles. The method can be applied as well in other fields, including structural biology and environmental sciences.
Assuntos
Nanopartículas , Espalhamento a Baixo Ângulo , Difração de Raios X , Raios X , RNA Mensageiro/genéticaRESUMO
DNA-binding proteins from starved cells (Dps) are small multifunctional nanocages expressed by prokaryotes in acute oxidative stress conditions or during the starvation-induced stationary phase, as a bacterial defense mechanism. Dps proteins protect bacterial DNA from damage by either direct binding or by removing precursors of reactive oxygen species from solution. The DNA-binding properties of most Dps proteins studied so far are related to their unordered, flexible, N- and C-terminal extensions. In a previous work, we revealed that the N-terminal tails of Deinoccocus grandis Dps shift from an extended to a compact conformation depending on the ionic strength of the buffer and detected a novel high-spin ferrous iron center in the proximal ends of those tails. In this work, we further explore the conformational dynamics of the protein by probing the effect of divalent metals binding to the tail by comparing the metal-binding properties of the wild-type protein with a binding site-impaired D34A variant using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism, and small-angle X-ray scattering. The N-terminal ferrous species was also characterized by Mössbauer spectroscopy. The results herein presented reveal that the conformation of the N-terminal tails is altered upon metal binding in a gradual, reversible, and specific manner. These observations may point towards the existence of a regulatory process for the DNA-binding properties of Dps proteins through metal binding to their N- and/or C-terminal extensions.
Assuntos
Proteínas de Bactérias , Deinococcus , Sequência de Aminoácidos , Proteínas de Bactérias/química , Deinococcus/química , Deinococcus/genética , Deinococcus/metabolismo , DNA Bacteriano/metabolismoRESUMO
Through an expansive international effort that involved data collection on 12 small-angle X-ray scattering (SAXS) and four small-angle neutron scattering (SANS) instruments, 171 SAXS and 76 SANS measurements for five proteins (ribonuclease A, lysozyme, xylanase, urate oxidase and xylose isomerase) were acquired. From these data, the solvent-subtracted protein scattering profiles were shown to be reproducible, with the caveat that an additive constant adjustment was required to account for small errors in solvent subtraction. Further, the major features of the obtained consensus SAXS data over the q measurement range 0-1â Å-1 are consistent with theoretical prediction. The inherently lower statistical precision for SANS limited the reliably measured q-range to <0.5â Å-1, but within the limits of experimental uncertainties the major features of the consensus SANS data were also consistent with prediction for all five proteins measured in H2O and in D2O. Thus, a foundation set of consensus SAS profiles has been obtained for benchmarking scattering-profile prediction from atomic coordinates. Additionally, two sets of SAXS data measured at different facilities to q > 2.2â Å-1 showed good mutual agreement, affirming that this region has interpretable features for structural modelling. SAS measurements with inline size-exclusion chromatography (SEC) proved to be generally superior for eliminating sample heterogeneity, but with unavoidable sample dilution during column elution, while batch SAS data collected at higher concentrations and for longer times provided superior statistical precision. Careful merging of data measured using inline SEC and batch modes, or low- and high-concentration data from batch measurements, was successful in eliminating small amounts of aggregate or interparticle interference from the scattering while providing improved statistical precision overall for the benchmarking data set.
Assuntos
Benchmarking , Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X , Consenso , Reprodutibilidade dos Testes , Proteínas/química , SolventesRESUMO
Bicelles are disk-shaped models of cellular membranes used to study lipid-protein interactions, as well as for structural and functional studies on transmembrane proteins. One challenge for the incorporation of transmembrane proteins in bicelles is the limited range of detergent and lipid combinations available for the successful reconstitution of proteins in model membranes. This is important, as the function and stability of transmembrane proteins are very closely linked to the detergents used for their purification and to the lipids that the proteins are embedded in. Here, we expand the toolkit of lipid and detergent combinations that allow the formation of stable bicelles. We use a combination of dynamic light scattering, small-angle X-ray scattering and cryogenic electron microscopy to perform a systematic sample characterization, thus providing a set of conditions under which bicelles can be successfully formed.
Assuntos
Bicamadas Lipídicas , Surfactantes Pulmonares , Bicamadas Lipídicas/química , Tensoativos , Detergentes/química , Espectroscopia de Ressonância Magnética , Micelas , Proteínas de Membrana/químicaRESUMO
DNA-binding proteins from starved cells (Dps) are homododecameric nanocages, with N- and C-terminal tail extensions of variable length and amino acid composition. They accumulate iron in the form of a ferrihydrite mineral core and are capable of binding to and compacting DNA, forming low- and high-order condensates. This dual activity is designed to protect DNA from oxidative stress, resulting from Fenton chemistry or radiation exposure. In most Dps proteins, the DNA-binding properties stem from the N-terminal tail extensions. We explored the structural characteristics of a Dps from Deinococcus grandis that exhibits an atypically long N-terminal tail composed of 52 residues and probed the impact of the ionic strength on protein conformation using size exclusion chromatography, dynamic light scattering, synchrotron radiation circular dichroism and small-angle X-ray scattering. A novel high-spin ferrous iron-binding site was identified in the N-terminal tails, using Mössbauer spectroscopy. Our data reveals that the N-terminal tails are structurally dynamic and alter between compact and extended conformations, depending on the ionic strength of the buffer. This prompts the search for other physiologically relevant modulators of tail conformation and hints that the DNA-binding properties of Dps proteins may be affected by external factors.
Assuntos
Proteínas de Bactérias , Deinococcus , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Deinococcus/genética , Ferro/metabolismo , Modelos Moleculares , Concentração OsmolarRESUMO
During the last decades discussions were taking place on the existence of global, non-thermal structural changes in biological macromolecules induced by Terahertz (THz) radiation. Despite numerous studies, a clear experimental proof of this effect for biological particles in solution is still missing. We developed a setup combining THz-irradiation with small angle X-ray scattering (SAXS), which is a sensitive method for detecting the expected structural changes. We investigated in detail protein systems with different shape morphologies (bovine serum albumin, microtubules), which have been proposed to be susceptible to THz-radiation, under variable parameters (THz wavelength, THz power densities up to 6.8 mW/cm2, protein concentrations). None of the studied systems and conditions revealed structural changes detectable by SAXS suggesting that the expected non-thermal THz-induced effects do not lead to alterations of the overall structures, which are revealed by scattering from dissolved macromolecules. This leaves us with the conclusion that, if such effects are present, these are either local or outside of the spectrum and power range covered by the present study.
Assuntos
Soroalbumina Bovina/química , Radiação Terahertz , Tubulina (Proteína)/química , Animais , Bovinos , Conformação Proteica , Espalhamento a Baixo Ângulo , Suínos , Difração de Raios XRESUMO
Small-angle X-ray scattering (SAXS) is an established method for studying nanostructured systems and in particular biological macromolecules in solution. To obtain element-specific information about the sample, anomalous SAXS (ASAXS) exploits changes of the scattering properties of selected atoms when the energy of the incident X-rays is close to the binding energy of their electrons. While ASAXS is widely applied to condensed matter and inorganic systems, its use for biological macromolecules is challenging because of the weak anomalous effect. Biological objects are often only available in small quantities and are prone to radiation damage, which makes biological ASAXS measurements very challenging. The BioSAXS beamline P12 operated by the European Molecular Biology Laboratory (EMBL) at the PETRA III storage ring (DESY, Hamburg) is dedicated to studies of weakly scattering objects. Here, recent developments at P12 allowing for ASAXS measurements are presented. The beamline control, data acquisition and data reduction pipeline of the beamline were adapted to conduct ASAXS experiments. Modelling tools were developed to compute ASAXS patterns from atomic models, which can be used to analyze the data and to help designing appropriate data collection strategies. These developments are illustrated with ASAXS experiments on different model systems performed at the P12 beamline.
RESUMO
Coronaviruses infect many different species including humans. The last two decades have seen three zoonotic coronaviruses, with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) causing a pandemic in 2020. Coronaviral non-structural proteins (nsps) form the replication-transcription complex (RTC). Nsp7 and nsp8 interact with and regulate the RNA-dependent RNA-polymerase and other enzymes in the RTC. However, the structural plasticity of nsp7+8 complexes has been under debate. Here, we present the framework of nsp7+8 complex stoichiometry and topology based on native mass spectrometry and complementary biophysical techniques of nsp7+8 complexes from seven coronaviruses in the genera Alpha- and Betacoronavirus including SARS-CoV-2. Their complexes cluster into three groups, which systematically form either heterotrimers or heterotetramers or both, exhibiting distinct topologies. Moreover, even at high protein concentrations, SARS-CoV-2 nsp7+8 consists primarily of heterotetramers. From these results, the different assembly paths can be pinpointed to specific residues and an assembly model proposed.
Assuntos
Alphacoronavirus/metabolismo , Betacoronavirus/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Reagentes de Ligações Cruzadas/química , Modelos Moleculares , Multimerização Proteica , Subunidades Proteicas/metabolismo , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Especificidade da Espécie , Proteínas não Estruturais Virais/química , Difração de Raios XRESUMO
Crystallization of recombinant proteins in living cells is an exciting new approach for structural biology that provides an alternative to the time-consuming optimization of protein purification and extensive crystal screening steps. Exploiting the potential of this approach requires a more detailed understanding of the cellular processes involved and versatile screening strategies for crystals in a cell culture. Particularly if the target protein forms crystalline structures of unknown morphology only in a small fraction of cells, their detection by applying standard visualization techniques can be time consuming and difficult owing to the environmental challenges imposed by the living cells. In this study, a high-brilliance and low-background bioSAXS beamline is employed for rapid and sensitive detection of protein microcrystals grown within insect cells. On the basis of the presence of Bragg peaks in the recorded small-angle X-ray scattering profiles, it is possible to assess within seconds whether a cell culture contains microcrystals, even in a small percentage of cells. Since such information cannot be obtained by other established detection methods in this time frame, this screening approach has the potential to overcome one of the bottlenecks of intracellular crystal detection. Moreover, the association of the Bragg peak positions in the scattering curves with the unit-cell composition of the protein crystals raises the possibility of investigating the impact of environmental conditions on the crystal structure of the intracellular protein crystals. This information provides valuable insights helping to further understand the in cellulo crystallization process.
RESUMO
Messenger ribonucleic acid (mRNA)-based nanomedicines have shown to be a promising new lead in a broad field of potential applications such as tumor immunotherapy. Of these nanomedicines, lipid-based mRNA nanoparticles comprising ionizable lipids are gaining increasing attention as versatile technologies for fine-tuning toward a given application, with proven potential for successful development up to clinical practice. Still, several hurdles have to be overcome to obtain a drug product that shows adequate mRNA delivery and clinical efficacy. In this study, pH-induced changes in internal molecular organization and overall physicochemical characteristics of lipoplexes comprising ionizable lipids were investigated using small-angle X-ray scattering and supplementary techniques. These changes were determined for different types of ionizable lipids, present at various molar fractions and N/P ratios inside the phospholipid membranes. The investigated systems showed a lamellar organization, allowing an accurate determination of pH-dependent structural changes. The differences in the pH responsiveness of the systems comprising different ionizable lipids and mRNA fractions could be clearly revealed from their structural evolution. Measurements of the degree of ionization and pH-dependent mRNA loading into the systems by fluorescence assays supported the findings from the structural investigation. Our approach allows for direct in situ determination of the structural response of the lipoplex systems to changes of the environmental pH similar to that observed for endosomal uptake. These data therefore provide valuable complementary information for understanding and fine-tuning of tailored mRNA delivery systems toward improved cellular uptake and endosomal processing.
Assuntos
Nanopartículas , Concentração de Íons de Hidrogênio , Tamanho da Partícula , RNA Mensageiro/genética , Raios XRESUMO
Coronaviruses infect many different species including humans. The last two decades have seen three zoonotic coronaviruses with SARS-CoV-2 causing a pandemic in 2020. Coronaviral non-structural proteins (nsp) built up the replication-transcription complex (RTC). Nsp7 and nsp8 interact with and regulate the RNA-dependent RNA-polymerase and other enzymes in the RTC. However, the structural plasticity of nsp7+8 complex has been under debate. Here, we present the framework of nsp7+8 complex stoichiometry and topology based on a native mass spectrometry and complementary biophysical techniques of nsp7+8 complexes from seven coronaviruses in the genera Alpha- and Betacoronavirus including SARS-CoV-2. Their complexes cluster into three groups, which systematically form either heterotrimers or heterotetramers or both, exhibiting distinct topologies. Moreover, even at high protein concentrations mainly heterotetramers are observed for SARS-CoV-2 nsp7+8. From these results, the different assembly paths can be pinpointed to specific residues and an assembly model is proposed.
RESUMO
Hybrid nanoparticles from lipidic and polymeric components were assembled to serve as vehicles for the transfection of messenger RNA (mRNA) using different portions of the cationic lipid DOTAP (1,2-Dioleoyl-3-trimethylammonium-propane) and the cationic biopolymer protamine as model systems. Two different sequential assembly approaches in comparison with a direct single-step protocol were applied, and molecular organization in correlation with biological activity of the resulting nanoparticle systems was investigated. Differences in the structure of the nanoparticles were revealed by thorough physicochemical characterization including small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). All hybrid systems, combining lipid and polymer, displayed significantly increased transfection in comparison to lipid/mRNA and polymer/mRNA particles alone. For the hybrid nanoparticles, characteristic differences regarding the internal organization, release characteristics, and activity were determined depending on the assembly route. The systems with the highest transfection efficacy were characterized by a heterogenous internal organization, accompanied by facilitated release. Such a system could be best obtained by the single step protocol, starting with a lipid and polymer mixture for nanoparticle formation.
Assuntos
Biopolímeros/química , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/metabolismo , Transfecção/métodos , Animais , Linhagem Celular , Ácidos Graxos Monoinsaturados/química , Feminino , Heparina/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Tamanho da Partícula , Compostos de Amônio Quaternário/química , RNA Mensageiro/químicaRESUMO
The binding of plasma proteins to a drug carrier alters the circulation of nanoparticles (NPs) in the bloodstream, and, as a consequence, the anticancer efficiency of the entire nanoparticle drug delivery system. We investigate the possible interaction and the interaction mechanism of a polymeric drug delivery system based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers (pHPMA) with the most abundant proteins in human blood plasma-namely, human serum albumin (HSA), immunoglobulin G (IgG), fibrinogen (Fbg), and apolipoprotein (Apo) E4 and A1-using a combination of small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), and nuclear magnetic resonance (NMR). Through rigorous investigation, we present evidence of weak interactions between proteins and polymeric nanomedicine. Such interactions do not result in the formation of the protein corona and do not affect the efficiency of the drug delivery.
RESUMO
Recent structures of full-length ATP-binding cassette (ABC) transporter MsbA in different states indicate large conformational changes during the reaction cycle that involve transient dimerization of its nucleotide-binding domains (NBDs). However, a detailed molecular understanding of the structural changes and associated kinetics of MsbA upon ATP binding and hydrolysis is still missing. Here, we employed time-resolved small-angle X-ray scattering, initiated by stopped-flow mixing, to investigate the kinetics and accompanying structural changes of NBD dimerization (upon ATP binding) and subsequent dissociation (upon ATP hydrolysis) in the context of isolated NBDs as well as full-length MsbA in lipid nanodiscs. Our data allowed us to structurally characterize the major states involved in the process and determine time constants for NBD dimerization and dissociation. In the full-length protein, these structural transitions occur on much faster time scales, indicating close-proximity effects and structural coupling of the transmembrane domains with the NBDs.
Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , Hidrólise , Multimerização Proteica , Espalhamento a Baixo Ângulo , Difração de Raios XRESUMO
The osseous sword of a swordfish (Xiphias gladius) is specialized to incapacitate prey with stunning blows. Considering the sword's growth and maturation pattern, aging from the sword's base to the tip, while missing a mechanosensitive osteocytic network, an in-depth understanding of its mechanical properties and bone quality is lacking. Microstructural, compositional, and nanomechanical characteristics of the bone along the sword are investigated to reveal structural mechanisms accounting for its exceptional mechanical competence. The degree of mineralization, homogeneity, and particle size increase from the base toward the tip, reflecting aging along its length. Fracture experiments reveal that crack-growth toughness vastly decreases at the highly and homogeneously mineralized tip, suggesting the importance of aging effects. Initiation toughness, however, is unchanged suggesting that aging effects on this hierarchical level are counteracted by constant mineral/fibril interaction. In conclusion, the sword of the swordfish provides an excellent model reflecting base-to-tip-wise aging of bone, as indicated by increasing mineralization and decreasing crack-growth toughness toward the tip. The hierarchical, structural, and compositional changes along the sword reflect peculiar prerequisites needed for resisting high mechanical loads. Further studies on advanced teleosts bone tissue may help to unravel structure-function relationships of heavily loaded skeletons lacking mechanosensing cells.
RESUMO
Across different kingdoms of life, ATP citrate lyase (ACLY, also known as ACL) catalyses the ATP-dependent and coenzyme A (CoA)-dependent conversion of citrate, a metabolic product of the Krebs cycle, to oxaloacetate and the high-energy biosynthetic precursor acetyl-CoA1. The latter fuels pivotal biochemical reactions such as the synthesis of fatty acids, cholesterol and acetylcholine2, and the acetylation of histones and proteins3,4. In autotrophic prokaryotes, ACLY is a hallmark enzyme of the reverse Krebs cycle (also known as the reductive tricarboxylic acid cycle), which fixates two molecules of carbon dioxide in acetyl-CoA5,6. In humans, ACLY links carbohydrate and lipid metabolism and is strongly expressed in liver and adipose tissue1 and in cholinergic neurons2,7. The structural basis of the function of ACLY remains unknown. Here we report high-resolution crystal structures of bacterial, archaeal and human ACLY, and use distinct substrate-bound states to link the conformational plasticity of ACLY to its multistep catalytic itinerary. Such detailed insights will provide the framework for targeting human ACLY in cancer8-11 and hyperlipidaemia12,13. Our structural studies also unmask a fundamental evolutionary relationship that links citrate synthase, the first enzyme of the oxidative Krebs cycle, to an ancestral tetrameric citryl-CoA lyase module that operates in the reverse Krebs cycle. This molecular transition marked a key step in the evolution of metabolism on Earth.