Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 10(12): 230918, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094270

RESUMO

Reconstruction of postglacial sea-level rise using reef cores recovered from Tahiti during IODP Expedition 310 showed that the first major acceleration, known as Meltwater Pulse 1a (MWP-1a), was a 12-22 m rise in 340 years starting at 14.65 ka BP. Although it was reported that the pulse did not drown Tahitian reefs, the subsequent discovery of a fringing reef at the base of several cores implies that its timing, magnitude and impact require revision. Here, we report facies and paleodepth data from this reef, revise sea level, and revisit reef response. We find its reef crest is dominated by surf-adapted corals to a depth of 2.5 m and show that it retreated upslope over an approximately 1000-year interval from 16 ka. Reef development then apparently ceased at 15 ka at -106 m and remained absent for approximately 600 years, before resuming at 14.4 ka further upslope at -93 m. This absence is consistent with reef drowning and requires that MWP-1a had a smaller magnitude of 13.8 ± 1.3 m, and may have started 300 years earlier than previously reported. It confirms MWP-1a was a global event, drowning reefs on Tahiti as well as those in other oceans.

2.
PLoS One ; 17(11): e0270053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36417385

RESUMO

Geomorphic differences among Caribbean reefs have long been noted. These differences are considered to reflect the presence of reefs in different stages of development, following an incomplete recovery from rapid deglacial sea-level rise. But the possibility that these reflect real developmental differences caused by variation in wind, wave, and climate regime, has never been fully considered. Here, for the first time, we quantify the geomorphology and distribution of Greater Caribbean reefs using satellite images in Google Earth and public-domain bathymetry. To do this, we first standardise their classification based on shallow geomorphology, substrate depth, and physiographic setting, and then count and categorise the total number of reefs. These data show a total of 1023 linear breakwater reefs with a combined length of 2237 km. Of this total length, 80% are fringing reefs, 16% are barriers and 4% are faros and atolls. In terms of categories, there are 16 reef subtypes present, but only 9 are common. Their distribution, however, is not uniform. In particular, flat-subtypes form 60% of breakwater reefs in southern regions, but are less common in northern regions where crest-subtypes dominate (80%). To distinguish the geomorphology of these common reef subtypes, we collect size- and length-related morphometric data from their main reef zones. These data reveal that flat and crest subtypes also have morphometric differences: flat subtypes have well-constrained morphologies with statistically consistent unimodal morphometrics characterised by large back-reef zones, smaller and steeper reef fronts, and more sinuous and persistent crestlines. Crest subtypes, by contrast, have multimodal morphometrics suggesting less consistent morphologies (or unresolved subtypes), and are characterised by crestlines with lower sinuosity, more variable back-reef and reef-front areas, and slopes. These differences in geomorphology and distribution imply that flat- and crest-subtypes are neither successional stages of a single reef type, nor a genetically related sequence of types, but distinct reefal geoforms with different modes of development. In subsequent work we will explore what controls these differences.


Assuntos
Clima , Região do Caribe
3.
PeerJ ; 10: e12590, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310164

RESUMO

The development of coral reefs results from the interaction between ecological and geological processes in space and time. Their difference in scale, however, makes it difficult to detect the impact of ecological changes on geological reef development. The decline of coral cover over the last 50 years, for example, has dramatically impaired the function of ecological processes on reefs. Yet given the limited-resolution of their Holocene record, it is uncertain how this will impact accretion and structural integrity over longer timescales. In addition, reports of this ecological decline have focused on intrinsic parameters such as coral cover and colony size at the expense of extrinsic ones such as geomorphic and environmental variables. Despite these problems, several attempts have been made to predict the long-term accretion status of reefs based entirely on the contemporary health status of benthic communities. Here we explore how this ecological decline is represented within the reef geomorphic structure, which represents the long-term expression of reef development. Using a detailed geomorphic zonation scheme, we analyze the distribution and biodiversity of reef-building corals in fringing-reef systems of the Mesoamerican Reef tract. We find a depth-related pattern in community structure which shows that the relative species distribution between geomorphic zones is statistically different. Despite these differences, contemporary coral assemblages in all zones are dominated by the same group of pioneer generalist species. These findings imply that first, coral species distribution is still controlled by extrinsic processes that generate the geomorphic zonation; second, that coral biodiversity still reflects species zonation patterns reported by early studies; and third that dominance of pioneer species implies that modern coral assemblages are in a prolonged post-disturbance adjustment stage. In conclusion, any accurate assessment of the future viability of reefs requires a consideration of the geomorphic context or risks miscalculating the impact of ecological changes on long-term reef development.


Assuntos
Antozoários , Animais , Ecossistema , Recifes de Corais , Biodiversidade , Região do Caribe
4.
PeerJ ; 8: e10389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282560

RESUMO

Motile cryptofauna inhabiting coral reefs are complex assemblages that utilize the space available among dead coral stands and the surrounding coral rubble substrate. They comprise a group of organisms largely overlooked in biodiversity estimates because they are hard to collect and identify, and their collection causes disturbance that is unsustainable in light of widespread reef degradation. Artificial substrate units (ASUs) provide a better sampling alternative and have the potential to enhance biodiversity estimates. The present study examines the effectiveness of ASUs made with defaunated coral rubble to estimate the diversity of motile cryptic crustaceans in the back-reef zone of the Puerto Morelos Reef National Park, Mexico. Species richness, Simpson's diversity index, Shannon-Wiener index and the composition of assemblages were compared between ASUs and samples from the surrounding coral rubble substrate. A combined total of 2,740 specimens of 178 different species, belonging to five orders of Crustacea (Amphipoda, Cumacea, Isopoda, Tanaidacea and Decapoda) were collected. Species richness was higher in the surrounding coral rubble and Shannon-Wiener and Simpson indexes were higher in ASUs. Species composition differed between methods, with only 71 species being shared among sampling methods. Decapoda was more speciose in ASUs and Peracarids in the surrounding coral rubble. Combining the use of ASUs with surrounding rubble provided a better inventory of motile cryptic crustacean biodiversity, as 65% of the species were represented by one or two specimens.

5.
PeerJ ; 8: e10103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33150066

RESUMO

Ecological processes on coral reefs commonly have limited spatial and temporal scales and may not be recorded in their long-term geological history. The widespread degradation of Caribbean coral reefs over the last 40 years therefore provides an opportunity to assess the impact of more significant ecological changes on the geological and geomorphic structure of reefs. Here, we document the changing ecology of communities in a coral reef seascape within the context of its geomorphic zonation. By comparing basic ecological indices between historical and modern data we show that in 35 years the reef-front zone was transformed from a complex coral assemblage with a three-dimensional structure, to a size-homogenized and flattened one that is quasi indistinguishable from the adjacent non-accretional coral-ground zone. Today coral assemblages at Punta Maroma are characterized by the dominance of opportunistic species which are either tolerant to adverse environmental conditions, including sedimentation, or are known to be the first scleractinian species to recruit on disturbed reefs, implying they reflect a post-hurricane stage of adjustment. Despite an increase in similarity in ecological indices, the reef-front and coral-ground geomorphic zones still retain significant differences in coral assemblages and benthic habitat and are not homogeneous. The partial convergence of coral assemblages certainly has important consequences for the ecology and geological viability of the reef and its role in coastal protection, but environmental physical drivers continue to exert a fundamental role in the character and zonation of benthic communities of this reef seascape.

6.
Sci Rep ; 4: 4997, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24845540

RESUMO

In 1842 Charles Darwin claimed that vertical growth on a subsiding foundation caused fringing reefs to transform into barrier reefs then atolls. Yet historically no transition between reef types has been discovered and they are widely considered to develop independently from antecedent foundations during glacio-eustatic sea-level rise. Here we reconstruct reef development from cores recovered by IODP Expedition 310 to Tahiti, and show that a fringing reef retreated upslope during postglacial sea-level rise and transformed into a barrier reef when it encountered a Pleistocene reef-flat platform. The reef became stranded on the platform edge, creating a lagoon that isolated it from coastal sediment and facilitated a switch to a faster-growing coral assemblage dominated by acroporids. The switch increased the reef's accretion rate, allowing it to keep pace with rising sea level, and transform into a barrier reef. This retreat mechanism not only links Darwin's reef types, but explains the re-occupation of reefs during Pleistocene glacio-eustacy.

7.
PLoS One ; 7(3): e32859, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22396797

RESUMO

Reductions in calcification in reef-building corals occur when thermal conditions are suboptimal, but it is unclear how they vary between genera in response to the same thermal stress event. Using densitometry techniques, we investigate reductions in the calcification rate of massive Porites spp. from the Great Barrier Reef (GBR), and P. astreoides, Montastraea faveolata, and M. franksi from the Mesoamerican Barrier Reef (MBR), and correlate them to thermal stress associated with ocean warming. Results show that Porites spp. are more sensitive to increasing temperature than Montastraea, with calcification rates decreasing by 0.40 g cm(-2) year(-1) in Porites spp. and 0.12 g cm(-2) year(-1) in Montastraea spp. for each 1°C increase. Under similar warming trends, the predicted calcification rates at 2100 are close to zero in Porites spp. and reduced by 40% in Montastraea spp. However, these predictions do not account for ocean acidification. Although yearly mean aragonite saturation (Ω(ar)) at MBR sites has recently decreased, only P. astreoides at Chinchorro showed a reduction in calcification. In corals at the other sites calcification did not change, indicating there was no widespread effect of Ω(ar) changes on coral calcification rate in the MBR. Even in the absence of ocean acidification, differential reductions in calcification between Porites spp. and Montastraea spp. associated with warming might be expected to have significant ecological repercussions. For instance, Porites spp. invest increased calcification in extension, and under warming scenarios it may reduce their ability to compete for space. As a consequence, shifts in taxonomic composition would be expected in Indo-Pacific reefs with uncertain repercussions for biodiversity. By contrast, Montastraea spp. use their increased calcification resources to construct denser skeletons. Reductions in calcification would therefore make them more susceptible to both physical and biological breakdown, seriously affecting ecosystem function in Atlantic reefs.


Assuntos
Antozoários/fisiologia , Calcinose , Análise de Variância , Animais , Austrália , Biodiversidade , Recifes de Corais , Geografia , Temperatura Alta , Oceanos e Mares , Especificidade da Espécie , Temperatura , Fatores de Tempo , Água/química
8.
PLoS One ; 6(12): e28461, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194839

RESUMO

Coral-grounds are reef communities that colonize rocky substratum but do not form framework or three-dimensional reef structures. To investigate why, we used video transects and underwater photography to determine the composition, structure and status of a coral-ground community located on the edge of a rocky terrace in front of a tourist park, Xcaret, in the northern Mesoamerican Reef tract, Mexico. The community has a relatively low coral, gorgonian and sponge cover (<10%) and high algal cover (>40%). We recorded 23 species of Scleractinia, 14 species of Gorgonacea and 30 species of Porifera. The coral community is diverse but lacks large coral colonies, being dominated instead by small, sediment-tolerant, and brooding species. In these small colonies, the abundance of potentially lethal interactions and partial mortality is high but decreases when colonies are larger than 40 cm. Such characteristics are consistent with an environment control whereby storm waves periodically remove larger colonies and elevate sediment flux. The community only survives these storm conditions due to its slope-break location, which ensures lack of burial and continued local recruitment. A comparison with similar coral-ground communities in adjacent areas suggests that the narrow width of the rock terrace hinders sediment stabilization, thereby ensuring that communities cannot escape bottom effects and develop into three-dimensional reef structures on geological time scales.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Animais , Comportamento Competitivo , Geografia , Sedimentos Geológicos , México , Comunicações Via Satélite , Análise de Sobrevida
9.
Nature ; 458(7240): 881-4, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19370032

RESUMO

Widespread evidence of a +4-6-m sea-level highstand during the last interglacial period (Marine Isotope Stage 5e) has led to warnings that modern ice sheets will deteriorate owing to global warming and initiate a rise of similar magnitude by ad 2100 (ref. 1). The rate of this projected rise is based on ice-sheet melting simulations and downplays discoveries of more rapid ice loss. Knowing the rate at which sea level reached its highstand during the last interglacial period is fundamental in assessing if such rapid ice-loss processes could lead to future catastrophic sea-level rise. The best direct record of sea level during this highstand comes from well-dated fossil reefs in stable areas. However, this record lacks both reef-crest development up to the full highstand elevation, as inferred from widespread intertidal indicators at +6 m, and a detailed chronology, owing to the difficulty of replicating U-series ages on submillennial timescales. Here we present a complete reef-crest sequence for the last interglacial highstand and its U-series chronology from the stable northeast Yucatán peninsula, Mexico. We find that reef development during the highstand was punctuated by reef-crest demise at +3 m and back-stepping to +6 m. The abrupt demise of the lower-reef crest, but continuous accretion between the lower-lagoonal unit and the upper-reef crest, allows us to infer that this back-stepping occurred on an ecological timescale and was triggered by a 2-3-m jump in sea level. Using strictly reliable (230)Th ages of corals from the upper-reef crest, and improved stratigraphic screening of coral ages from other stable sites, we constrain this jump to have occurred approximately 121 kyr ago and conclude that it supports an episode of ice-sheet instability during the terminal phase of the last interglacial period.


Assuntos
Antozoários/fisiologia , Efeito Estufa , Camada de Gelo , Água do Mar/análise , Animais , Fósseis , História Antiga , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA