Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578610

RESUMO

BACKGROUND: TACE may prime adaptive immunity and enhance immunotherapy efficacy. PETAL evaluated safety, preliminary activity of TACE plus pembrolizumab and explored mechanisms of efficacy. METHODS: Patients with liver-confined HCC were planned to receive up to 2 rounds of TACE followed by pembrolizumab 200 mg every 21 days commencing 30-days post-TACE until disease progression or unacceptable toxicity for up to 1 year. Primary endpoint was safety, 21-days dose-limiting toxicities (DLT) from pembrolizumab initiation. Secondary endpoints included progression-free survival (PFS) and evaluation of tumour and host determinants of response. RESULTS: Fifteen patients were included in the safety and efficacy population: 73% had non-viral cirrhosis, median age was 72 years. Child-Pugh (CP) class was A in 14 patients. Median tumour size was 4 cm. Ten patients (67%) received pembrolizumab after 1 TACE, 5 patients after 2 (33%). Pembrolizumab yielded no synergistic toxicity nor DLTs post-TACE. Treatment-related adverse events occurred in 93% of patients most commonly skin rash (40%), fatigue and diarrhoea (27%). After a median follow-up of 38.5 months, objective response rate (ORR) 12 weeks post-TACE was 53%. PFS rate at 12 weeks was 93% and median PFS was 8.95 months (95%CI 7.30-NA). Median duration of response was 7.3 months (95%CI: 6.3-8.3). Median OS was 33.5 months (95%CI: 11.6-NA). Dynamic changes in peripheral T-cell subsets, circulating tumour DNA, serum metabolites and in stool bacterial profiles highlight potential mechanisms of action of multi-modal therapy. CONCLUSIONS: TACE plus pembrolizumab was tolerable with no evidence of synergistic toxicity, encouraging further clinical development of immunotherapy alongside TACE.

2.
Nat Commun ; 14(1): 6719, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872166

RESUMO

Immune checkpoint inhibitors (CPIs) are a relatively newly licenced cancer treatment, which make a once previously untreatable disease now amenable to a potential cure. Combination regimens of anti-CTLA4 and anti-PD-1 show enhanced efficacy but are prone to off-target immune-mediated tissue injury, particularly at the barrier surfaces. To probe the impact of immune checkpoints on intestinal homoeostasis, mice are challenged with anti-CTLA4 and anti-PD-1 immunotherapy and manipulation of the intestinal microbiota. The immune profile of the colon of these mice with CPI-colitis is analysed using bulk RNA sequencing, single-cell RNA sequencing and flow cytometry. CPI-colitis in mice is dependent on the composition of the intestinal microbiota and by the induction of lymphocytes expressing interferon-γ (IFNγ), cytotoxicity molecules and other pro-inflammatory cytokines/chemokines. This pre-clinical model of CPI-colitis could be attenuated following blockade of the IL23/IFNγ axis. Therapeutic targeting of IFNγ-producing lymphocytes or regulatory networks, may hold the key to reversing CPI-colitis.


Assuntos
Colite , Interferon gama , Animais , Camundongos , Colite/induzido quimicamente , Citocinas , Inibidores de Checkpoint Imunológico , Interferon gama/genética , Linfócitos
3.
EBioMedicine ; 88: 104430, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634565

RESUMO

BACKGROUND: Patients with inflammatory bowel disease (IBD) treated with anti-TNF therapy exhibit attenuated humoral immune responses to vaccination against SARS-CoV-2. The gut microbiota and its functional metabolic output, which are perturbed in IBD, play an important role in shaping host immune responses. We explored whether the gut microbiota and metabolome could explain variation in anti-SARS-CoV-2 vaccination responses in immunosuppressed IBD patients. METHODS: Faecal and serum samples were prospectively collected from infliximab-treated patients with IBD in the CLARITY-IBD study undergoing vaccination against SARS-CoV-2. Antibody responses were measured following two doses of either ChAdOx1 nCoV-19 or BNT162b2 vaccine. Patients were classified as having responses above or below the geometric mean of the wider CLARITY-IBD cohort. 16S rRNA gene amplicon sequencing, nuclear magnetic resonance (NMR) spectroscopy and bile acid profiling with ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) were performed on faecal samples. Univariate, multivariable and correlation analyses were performed to determine gut microbial and metabolomic predictors of response to vaccination. FINDINGS: Forty-three infliximab-treated patients with IBD were recruited (30 Crohn's disease, 12 ulcerative colitis, 1 IBD-unclassified; 26 with concomitant thiopurine therapy). Eight patients had evidence of prior SARS-CoV-2 infection. Seventeen patients (39.5%) had a serological response below the geometric mean. Gut microbiota diversity was lower in below average responders (p = 0.037). Bilophila abundance was associated with better serological response, while Streptococcus was associated with poorer response. The faecal metabolome was distinct between above and below average responders (OPLS-DA R2X 0.25, R2Y 0.26, Q2 0.15; CV-ANOVA p = 0.038). Trimethylamine, isobutyrate and omega-muricholic acid were associated with better response, while succinate, phenylalanine, taurolithocholate and taurodeoxycholate were associated with poorer response. INTERPRETATION: Our data suggest that there is an association between the gut microbiota and variable serological response to vaccination against SARS-CoV-2 in immunocompromised patients. Microbial metabolites including trimethylamine may be important in mitigating anti-TNF-induced attenuation of the immune response. FUNDING: JLA is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-502), funded by Imperial College London and The Joyce and Norman Freed Charitable Trust. BHM is the recipient of an NIHR Academic Clinical Lectureship (CL-2019-21-002). The Division of Digestive Diseases at Imperial College London receives financial and infrastructure support from the NIHR Imperial Biomedical Research Centre (BRC) based at Imperial College Healthcare NHS Trust and Imperial College London. Metabolomics studies were performed at the MRC-NIHR National Phenome Centre at Imperial College London; this work was supported by the Medical Research Council (MRC), the National Institute of Health Research (NIHR) (grant number MC_PC_12025) and infrastructure support was provided by the NIHR Imperial Biomedical Research Centre (BRC). The NIHR Exeter Clinical Research Facility is a partnership between the University of Exeter Medical School College of Medicine and Health, and Royal Devon and Exeter NHS Foundation Trust. This project is supported by the National Institute for Health Research (NIHR) Exeter Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NIHR or the UK Department of Health and Social Care.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Vacinas contra COVID-19 , Formação de Anticorpos , ChAdOx1 nCoV-19 , Vacina BNT162 , Infliximab , RNA Ribossômico 16S , Inibidores do Fator de Necrose Tumoral/uso terapêutico , SARS-CoV-2 , Doenças Inflamatórias Intestinais/tratamento farmacológico , Metaboloma
4.
Cells ; 10(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34831456

RESUMO

Fecal microbiota transplantation (FMT) is highly effective in recurrent Clostridioides difficile infection (CDI); increasing evidence supports FMT in severe or fulminant Clostridioides difficile infection (SFCDI). However, the multifactorial mechanisms that underpin the efficacy of FMT are not fully understood. Systems biology approaches using high-throughput technologies may help with mechanistic dissection of host-microbial interactions. Here, we have undertaken a deep phenomics study on four adults receiving sequential FMT for SFCDI, in which we performed a longitudinal, integrative analysis of multiple host factors and intestinal microbiome changes. Stool samples were profiled for changes in gut microbiota and metabolites and blood samples for alterations in targeted epigenomic, metabonomic, glycomic, immune proteomic, immunophenotyping, immune functional assays, and T-cell receptor (TCR) repertoires, respectively. We characterised temporal trajectories in gut microbial and host immunometabolic data sets in three responders and one non-responder to sequential FMT. A total of 562 features were used for analysis, of which 78 features were identified, which differed between the responders and the non-responder. The observed dynamic phenotypic changes may potentially suggest immunosenescent signals in the non-responder and may help to underpin the mechanisms accompanying successful FMT, although our study is limited by a small sample size and significant heterogeneity in patient baseline characteristics. Our multi-omics integrative longitudinal analytical approach extends the knowledge regarding mechanisms of efficacy of FMT and highlights preliminary novel signatures, which should be validated in larger studies.


Assuntos
Infecções por Clostridium/terapia , Transplante de Microbiota Fecal , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Neutralizantes/metabolismo , Toxinas Bacterianas/imunologia , Chlorocebus aethiops , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Análise por Conglomerados , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Genômica , Humanos , Imunossenescência , Masculino , Pessoa de Meia-Idade , Filogenia , Receptores de Antígenos de Linfócitos T/metabolismo , Fatores de Tempo , Resultado do Tratamento , Células Vero
5.
Microorganisms ; 9(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34361920

RESUMO

BACKGROUND: Non-communicable diseases (NCDs) have become a major cause of morbidity and mortality in India. Perturbation of host-microbiome interactions may be a key mechanism by which lifestyle-related risk factors such as tobacco use, alcohol consumption, and physical inactivity may influence metabolic health. There is an urgent need to identify relevant dysmetabolic traits for predicting risk of metabolic disorders, such as diabetes, among susceptible Asian Indians where NCDs are a growing epidemic. METHODS: Here, we report the first in-depth phenotypic study in which we prospectively enrolled 218 adults from urban and rural areas of Central India and used multiomic profiling to identify relationships between microbial taxa and circulating biomarkers of cardiometabolic risk. Assays included fecal microbiota analysis by 16S ribosomal RNA gene amplicon sequencing, quantification of serum short chain fatty acids by gas chromatography-mass spectrometry, and multiplex assaying of serum diabetic proteins, cytokines, chemokines, and multi-isotype antibodies. Sera was also analysed for N-glycans and immunoglobulin G Fc N-glycopeptides. RESULTS: Multiple hallmarks of dysmetabolism were identified in urbanites and young overweight adults, the majority of whom did not have a known diagnosis of diabetes. Association analyses revealed several host-microbe and metabolic associations. CONCLUSIONS: Host-microbe and metabolic interactions are differentially shaped by body weight and geographic status in Central Indians. Further exploration of these links may help create a molecular-level map for estimating risk of developing metabolic disorders and designing early interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA