Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 14(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38534256

RESUMO

A proof-of-concept of a microwave imaging system for the fast detection of abdominal aortic aneurysms is shown. This experimental technology seeks to overcome the factors hampering the fast screening for these aneurysms with the usual equipment, such as high cost, long-time operation or hazardous exposure to chemical substances. The hardware system is composed of 16 twin antennas mastered by a microcontroller through a switching network, which connects the antennas to the measurement instrument for sequential measurement. The software system is run by a computer, mastering the whole system, automatizing the measurement process and running the signal processing and medical image generation algorithms. Two image generation algorithms are tested: Delay-and-Sum (DAS) and Improved Delay-and-Sum (IDAS). Own-modified versions of these algorithms adapted to the requirements of our system are proposed. The system is carefully calibrated and fine-tuned with known objects placed at known distances. An experimental proof-of-concept is shown with a human torso phantom, including an aorta phantom and an aneurysm phantom placed in different positions. The results show good imaging capabilities with the potential for detecting and locating possible abdominal aortic aneurysms and reporting acceptable errors.


Assuntos
Aneurisma da Aorta Abdominal , Imageamento de Micro-Ondas , Humanos , Aneurisma da Aorta Abdominal/diagnóstico , Software , Algoritmos , Imagens de Fantasmas
2.
Biosensors (Basel) ; 12(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36140137

RESUMO

This work introduces a microwave-based system able to detect tumours in breast phantoms in a non-invasive way. The data acquisition system is composed of a hardware system which involves high-frequency components (antennas, switches and cables), a microcontroller, a vector network analyser used as measurement instrument and a computer devoted to the control and automation of the operation of the system. Concerning the software system, the computer runs a Python script which is in charge of mastering and automatising all the required stages for the data acquisition, from initialisation of the hardware system to performing and saving the measurements. We also report on the design of the high-performance broadband antenna used to carry out the measurements, as well as on the algorithm employed to build the final medical images, based on an adapted version of the so-called Improved Delay-and-Sum (IDAS) algorithm improved by a Hamming window filter and averaging preprocessing. The calibration and start-up of the system are also described. The experimental validation includes the use of different tumour models with different dielectric properties inside the breast phantom. The results show promising tumour detection capabilities, even when there is low dielectric contrast between the tumoural and healthy tissues, as is the usual case for dense breasts in young women.


Assuntos
Neoplasias da Mama , Micro-Ondas , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Calibragem , Feminino , Humanos , Imagens de Fantasmas
3.
Sensors (Basel) ; 22(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35632255

RESUMO

A radio frequency (RF)-based system for surgical navigation is presented. Surgical navigation technologies are widely used nowadays for aiding the surgical team with many interventions. However, the currently available options still pose considerable limitations, such as line-of-sight occlusion prevention or restricted materials and equipment allowance. In this work, we suggest a different approach based on a microwave broadband antenna system. We combine techniques from microwave medical imaging, which can overcome the current limitations in surgical navigation technologies, and we propose methods to develop RF-based systems for real-time tracking neurosurgical tools. The design of the RF system to perform the measurements is shown and discussed, and two methods (Multiply and Sum and Delay Multiply and Sum) for building the medical images are analyzed. From these measurements, a surgical tool's position tracking system is developed and experimentally assessed in an emulated surgical scenario. The reported results are coherent with other approaches found in the literature, while overcoming their main practical limitations. The discussion of the results discloses some hints on the validity of the system, the optimal configurations depending on the requirements, and the possibilities for future enhancements.


Assuntos
Ondas de Rádio , Cirurgia Assistida por Computador , Cirurgia Assistida por Computador/métodos
4.
Polymers (Basel) ; 12(9)2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32872172

RESUMO

This work presents a study on the implementation and manufacturing of low-cost microwave electronic circuits, made with additive manufacturing techniques using fused deposition modeling (FDM) technology. First, the manufacturing process of substrates with different filaments, using various options offered by additive techniques in the manufacture of 3D printing parts, is described. The implemented substrates are structurally analyzed by ultrasound techniques to verify the correct metallization and fabrication of the substrate, and the characterization of the electrical properties in the microwave frequency range of each filament is performed. Finally, standard and novel microwave filters in microstrip and stripline technology are implemented, making use of the possibilities offered by additive techniques in the manufacturing process. The designed devices were manufactured and measured with good results, which demonstrates the possibility of using low-cost 3D printers in the design process of planar microwave circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA