Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448858

RESUMO

Staphylococcal food poisoning outbreaks are caused by the ingestion of food contaminated with staphylococcal enterotoxins (SEs). Among the 27 SEs described in the literature to date, only a few can be detected using immuno-enzymatic-based methods that are strongly dependent on the availability of antibodies. Liquid chromatography, coupled to high-resolution mass spectrometry (LC-HRMS), has, therefore, been put forward as a relevant complementary method, but only for the detection of a limited number of enterotoxins. In this work, LC-HRMS was developed for the detection and quantification of 24 SEs. A database of 93 specific signature peptides and LC-HRMS parameters was optimized using sequences from 24 SEs, including their 162 variants. A label-free quantification protocol was established to overcome the absence of calibration standards. The LC-HRMS method showed high performance in terms of specificity, sensitivity, and accuracy when applied to 49 enterotoxin-producing strains. SE concentrations measured depended on both SE type and the coagulase-positive staphylococci (CPS) strain. This study indicates that LC-MS is a relevant alternative and complementary tool to ELISA methods. The advantages of LC-MS clearly lie in both the multiplex analysis of a large number of SEs, and the automated analysis of a high number of samples.


Assuntos
Enterotoxinas , Intoxicação Alimentar Estafilocócica , Cromatografia Líquida , Enterotoxinas/análise , Humanos , Espectrometria de Massas , Intoxicação Alimentar Estafilocócica/diagnóstico , Staphylococcus aureus
2.
J Proteome Res ; 21(2): 547-556, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968056

RESUMO

We addressed here the need for improved sensitivity of top-down mass spectrometry for identification, differentiation, and absolute quantification of sequence variants of SEA, a bacterial toxin produced by Staphylococcus aureus and regularly involved in food poisoning outbreaks (FPO). We combined immunoaffinity enrichment, a protein internal standard, and optimized acquisition conditions, either by full-scan high-resolution mass spectrometry (HRMS) or multiplex parallel reaction monitoring (PRM) mode. Deconvolution of full-scan HRMS signal and PRM detection of variant-specific fragment ions allowed confident identification of each SEA variant. Summing the PRM signal of variant-common fragment ions was most efficient for absolute quantification, illustrated by a sensitivity down to 2.5 ng/mL and an assay variability below 15%. Additionally, we showed that relative PRM fragment ion abundances constituted a supplementary specificity criterion in top-down quantification. The top-down method was successfully evaluated on a panel of enterotoxin-producing strains isolated during FPO, in parallel to the conventional whole genome sequencing, ELISA, and bottom-up mass spectrometry methods. Top-down provided at the same time correct identification of the SEA variants produced and precise determination of the toxin level. The raw files generated in this study can be found on PASSEL (Peptide Atlas) under data set identifier PASS01710.


Assuntos
Enterotoxinas , Microbiologia de Alimentos , Enterotoxinas/análise , Enterotoxinas/genética , Enterotoxinas/metabolismo , Espectrometria de Massas/métodos , Staphylococcus aureus/metabolismo
3.
J Agric Food Chem ; 69(8): 2603-2610, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33596646

RESUMO

Staphylococcal enterotoxins (SEs) are responsible for frequent food poisoning outbreaks worldwide. Specific identification of SEs is crucial for confirmation of food poisoning, tracking of the incriminated foods or food ingredients, and removal from the food chain. Here, we report on a new food testing protocol addressing the challenge of low abundance of SEs in contaminated food and high sequence heterogeneity. Multiplex ability of targeted high-resolution mass spectrometry was succesfully applied to the simultaneous and quantitative determination of the eight most frequent SEs including sequence variants. In this aim, between three and eight proteotypic peptides of each SE were selected by carefully considering amino acid variations within each type, and sequence homology between types. Quantification of trace levels of SEs directly in food samples was reached by immunoaffinity enrichment and optimized analytical conditions. The assay was validated in dairy food products with a lower limit of quantification down to 0.1 ng/g (in milk), and quantification of SEs was successfully demonstrated in real-life samples collected during staphylococcal food poisoning outbreaks. Importantly, the ability of the method to detect diverse sequence variants was also illustrated. By enabling for the first time the simultaneous quantification of the eight most frequent SEs, the new mass spectrometry-based assay would facilitate the laboratory confirmation of positive samples in situation of food poisoning outbreaks.


Assuntos
Intoxicação Alimentar Estafilocócica , Staphylococcus aureus , Animais , Cromatografia Líquida , Laticínios , Enterotoxinas/análise , Microbiologia de Alimentos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA