Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38463962

RESUMO

Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).

2.
Front Genet ; 15: 1240462, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495670

RESUMO

Background: Socioeconomic Status (SES) is a potent environmental determinant of health. To our knowledge, no assessment of genotype-environment interaction has been conducted to consider the joint effects of socioeconomic status and genetics on risk for metabolic disease. We analyzed data from the Mexican American Family Studies (MAFS) to evaluate the hypothesis that genotype-by-environment interaction (GxE) is an essential determinant of variation in risk factors for metabolic syndrome (MS). Methods: We employed a maximum likelihood estimation of the decomposition of variance components to detect GxE interaction. After excluding individuals with diabetes and individuals on medication for diabetes, hypertension, or dyslipidemia, we analyzed 12 MS risk factors: fasting glucose (FG), fasting insulin (FI), 2-h glucose (2G), 2-h insulin (2I), body mass index (BMI), waist circumference (WC), leptin (LP), high-density lipoprotein-cholesterol (HDL-C), triglycerides (TG), total serum cholesterol (TSC), systolic blood pressure (SBP), and diastolic blood pressure (DBP). Our SES variable used a combined score of Duncan's socioeconomic index and education years. Heterogeneity in the additive genetic variance across the SES continuum and a departure from unity in the genetic correlation coefficient were taken as evidence of GxE interaction. Hypothesis tests were conducted using standard likelihood ratio tests. Results: We found evidence of GxE for fasting glucose, 2-h glucose, 2-h insulin, BMI, and triglycerides. The genetic effects underlying the insulin/glucose metabolism component of MS are upregulated at the lower end of the SES spectrum. We also determined that the household variance for systolic blood pressure decreased with increasing SES. Conclusion: These results show a significant change in the GxE interaction underlying the major components of MS in response to changes in socioeconomic status. Further mRNA sequencing studies will identify genes and canonical gene pathways to support our molecular-level hypotheses.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38555241

RESUMO

BACKGROUND AND AIMS: Hepatic steatosis is known to be heritable, but its genetic basis is mostly uncharacterized. Steatosis is associated with metabolic and adiposity features; recent studies hypothesize that shared genetic effects between these traits could account for some of the unexplained heritability. This study aimed to quantify these genetic associations in a family-based sample of non-Hispanic white adults. METHODS AND RESULTS: 704 participants (18-95 years, 55.8% female) from the Fels Longitudinal Study with an MRI assessment of liver fat were included. Quantitative genetic analyses estimated the age- and sex-adjusted heritability of individual traits and the genetic correlations within trait pairs. Mean liver fat was 5.95% (SE = 0.23) and steatosis (liver fat >5.56%) was present in 29.8% of participants. Heritability (h2± SE) of steatosis was 0.72 ± 0.17 (p = 6.80e-6). All other traits including liver enzymes, fasting glucose, HOMA-IR, visceral and subcutaneous adipose tissue (VAT, SAT), body mass index, body fat percent, waist circumference, lipids and blood pressure were also heritable. Significant genetic correlations were found between liver fat and all traits except aspartate aminotransferase (AST), and among most trait pairs. Highest genetic correlations were between liver fat and HOMA-IR (0.85 ± 0.08, p = 1.73e-8), fasting glucose and ALT (0.89 ± 0.26, p = 6.68e-5), and HOMA-IR with: waist circumference (0.81 ± 0.12, p = 3.76e-6), body fat percent (0.78 ± 0.12 p = 2.42e-5) and VAT (0.73 ± 0.07, p = 6.37e-8). CONCLUSIONS: Common genes may exist between liver fat accumulation, metabolic features and adiposity phenotypes.

4.
Cells ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474333

RESUMO

A large portion of the heterogeneity in coronavirus disease 2019 (COVID-19) susceptibility and severity of illness (SOI) remains poorly understood. Recent evidence suggests that SARS-CoV-2 infection-associated damage to alveolar epithelial type 2 cells (AT2s) in the distal lung may directly contribute to disease severity and poor prognosis in COVID-19 patients. Our in vitro modeling of SARS-CoV-2 infection in induced pluripotent stem cell (iPSC)-derived AT2s from 10 different individuals showed interindividual variability in infection susceptibility and the postinfection cellular viral load. To understand the underlying mechanism of the AT2's capacity to regulate SARS-CoV-2 infection and cellular viral load, a genome-wide differential gene expression analysis between the mock and SARS-CoV-2 infection-challenged AT2s was performed. The 1393 genes, which were significantly (one-way ANOVA FDR-corrected p ≤ 0.05; FC abs ≥ 2.0) differentially expressed (DE), suggest significant upregulation of viral infection-related cellular innate immune response pathways (p-value ≤ 0.05; activation z-score ≥ 3.5), and significant downregulation of the cholesterol- and xenobiotic-related metabolic pathways (p-value ≤ 0.05; activation z-score ≤ -3.5). Whilst the effect of post-SARS-CoV-2 infection response on the infection susceptibility and postinfection viral load in AT2s is not clear, interestingly, pre-infection (mock-challenged) expression of 238 DE genes showed a high correlation with the postinfection SARS-CoV-2 viral load (FDR-corrected p-value ≤ 0.05 and r2-absolute ≥ 0.57). The 85 genes whose expression was negatively correlated with the viral load showed significant enrichment in viral recognition and cytokine-mediated innate immune GO biological processes (p-value range: 4.65 × 10-10 to 2.24 × 10-6). The 153 genes whose expression was positively correlated with the viral load showed significant enrichment in cholesterol homeostasis, extracellular matrix, and MAPK/ERK pathway-related GO biological processes (p-value range: 5.06 × 10-5 to 6.53 × 10-4). Overall, our results strongly suggest that AT2s' pre-infection innate immunity and metabolic state affect their susceptibility to SARS-CoV-2 infection and viral load.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , SARS-CoV-2 , Carga Viral , Imunidade Inata , Colesterol
5.
Nat Commun ; 15(1): 1540, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378775

RESUMO

Recent advancements in plasma lipidomic profiling methodology have significantly increased specificity and accuracy of lipid measurements. This evolution, driven by improved chromatographic and mass spectrometric resolution of newer platforms, has made it challenging to align datasets created at different times, or on different platforms. Here we present a framework for harmonising such plasma lipidomic datasets with different levels of granularity in their lipid measurements. Our method utilises elastic-net prediction models, constructed from high-resolution lipidomics reference datasets, to predict unmeasured lipid species in lower-resolution studies. The approach involves (1) constructing composite lipid measures in the reference dataset that map to less resolved lipids in the target dataset, (2) addressing discrepancies between aligned lipid species, (3) generating prediction models, (4) assessing their transferability into the targe dataset, and (5) evaluating their prediction accuracy. To demonstrate our approach, we used the AusDiab population-based cohort (747 lipid species) as the reference to impute unmeasured lipid species into the LIPID study (342 lipid species). Furthermore, we compared measured and imputed lipids in terms of parameter estimation and predictive performance, and validated imputations in an independent study. Our method for harmonising plasma lipidomic datasets will facilitate model validation and data integration efforts.


Assuntos
Lipidômica , Plasma , Humanos , Espectrometria de Massas , Lipídeos
6.
J Magn Reson Imaging ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240167

RESUMO

BACKGROUND: Intravoxel incoherent motion (IVIM) diffusion weighted MRI (DWI) has potential for evaluating hepatic fibrosis but image acquisition technique influence on diffusion parameter estimation bears investigation. PURPOSE: To minimize variability and maximize repeatably in abdominal DWI in terms of IVIM parameter estimates. STUDY TYPE: Prospective test-retest and image quality comparison. SUBJECTS: Healthy volunteers (3F/7M, 29.9 ± 12.9 years) and Family Study subjects (18F/12M, 51.7 ± 16.7 years), without and with liver steatosis. FIELD STRENGTH/SEQUENCE: Abdominal single-shot echo-planar imaging (EPI) and simultaneous multi-slice (SMS) DWI sequences with respiratory triggering (RT), breath-holding (BH), and navigator echo (NE) at 3 Tesla. ASSESSMENT: SMS-BH, EPI-NE, and SMS-RT data from twice-scanned healthy volunteers were analyzed using 6 × b-values (0-800 s⋅mm-2 ) and lower (LO) and higher (HI) b-value ranges. Family Study subjects were scanned using SMS and standard EPI sequences. The biexponential IVIM model was used to estimate fast-diffusion coefficient (Df ), fraction of fast diffusion (f), and slow-diffusion coefficient (Ds ). Scan time, estimated signal-to-noise ratio (eSNR), eSNR per acquisition, and distortion ratio were compared. STATISTICAL TESTS: Coefficients of variation (CoV) and Bland Altman analyses were performed for test-retest repeatability. Interclass correlation coefficient (ICC) assessed interobserver agreement with P < 0.05 deemed significant. RESULTS: Within-subject CoVs among volunteers (N = 10) for f and Ds were lowest in EPI-NE-LO (11.6%) and SMS-RT-HI (11.1%). Inter-observer ICCs for f and Ds were highest for EPI-NE-LO (0.63) and SMS-RT-LO (0.76). Df could not be estimated for most subjects. Estimated eSNR (EPI = 21.9, SMS = 4.7) and eSNR time (EPI = 6.7, SMS = 16.6) were greater for SMS, with less distortion in the liver region (DR-PE: EPI = 23.6, SMS = 13.1). DATA CONCLUSION: Simultaneous multislice acquisitions had significantly less variability and higher ICCs of Ds , higher eSNR, less distortion, and reduced scan time compared to EPI. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

7.
Med Image Anal ; 91: 103043, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029722

RESUMO

Magnetic Resonance Imaging provides unprecedented images of the brain. Unfortunately, scanners and acquisition protocols can significantly impact MRI scans. The development of statistical methods able to reduce this variability without altering the relevant information in the scans, often coined harmonization methods, has been the topic of an increasing research effort supported by the recent growth of publicly available neuroimaging data sets and new possibilities for combining them to achieve greater statistical power. In this work, we focus on the challenges specifically raised by the harmonization of resting-state functional MRI scans. We propose to harmonize resting-state fMRI scans by reducing the impact of covariates such as scanner differences and scanning protocols on their associated functional connectomes and then propagating the changes back to the rs-fMRI time series. We use Riemannian geometric frameworks to preserve the mathematical properties of functional connectomes during their harmonization, and we demonstrate how state-of-the-art harmonization methods can be embedded within these frameworks to reduce covariates effects while preserving the relevant clinical information associated with aging or brain disorders. During our experiments, a large set of synthetic data was generated and processed to compare eighty variants of the proposed approach. The framework achieving the best harmonization was then applied to three low-dimensional data sets made of 712 sets of fMRI time series provided by the ABIDE consortium and two high-dimensional data sets obtained by processing 1527 rs-fMRI scans provided by the Human Connectome Project, the Framingham Heart Study and the Genetics of Brain Structure and Function study. These experiments established that our new framework could successfully harmonize low-dimensional connectomes and voxelwise functional time series and confirmed the need for preserving connectomes properties during their harmonization.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Conectoma/métodos
8.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961304

RESUMO

CC-chemokine ligand 2 (CCL2) is involved in the pathogenesis of several diseases associated with monocyte/macrophage recruitment, such as HIV-associated neurocognitive disorder (HAND), tuberculosis, and atherosclerosis. The rs1024611 (alleles:A>G; G is the risk allele) polymorphism in the CCL2 cis-regulatory region is associated with increased CCL2 expression in vitro and ex vivo, leukocyte mobilization in vivo, and deleterious disease outcomes. However, the molecular basis for the rs1024611-associated differential CCL2 expression remains poorly characterized. It is conceivable that genetic variant(s) in linkage disequilibrium (LD) with rs1024611 could mediate such effects. Previously, we used rs13900 (alleles:_C>T) in the CCL2 3' untranslated region (3' UTR) that is in perfect LD with rs1024611 to demonstrate allelic expression imbalance (AEI) of CCL2 in heterozygous individuals. Here we tested the hypothesis that the rs13900 could modulate CCL2 expression by altering mRNA turnover and/or translatability. The rs13900 T allele conferred greater stability to the CCL2 transcript when compared to the rs13900 C allele. The rs13900 T allele also had increased binding to Human Antigen R (HuR), an RNA-binding protein, in vitro and ex vivo. The rs13900 alleles imparted differential activity to reporter vectors and influenced the translatability of the reporter transcript. We further demonstrated a role for HuR in mediating allele-specific effects on CCL2 expression in overexpression and silencing studies. The presence of the rs1024611G-rs13900T conferred a distinct transcriptomic signature related to inflammation and immunity. Our studies suggest that the differential interactions of HuR with rs13900 could modulate CCL2 expression and explain the interindividual differences in CCL2-mediated disease susceptibility.

9.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961350

RESUMO

Large-scale whole-genome sequencing (WGS) studies have improved our understanding of the contributions of coding and noncoding rare variants to complex human traits. Leveraging association effect sizes across multiple traits in WGS rare variant association analysis can improve statistical power over single-trait analysis, and also detect pleiotropic genes and regions. Existing multi-trait methods have limited ability to perform rare variant analysis of large-scale WGS data. We propose MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for functionally-informed multi-trait rare variant analysis in large-scale WGS studies. MultiSTAAR accounts for relatedness, population structure and correlation among phenotypes by jointly analyzing multiple traits, and further empowers rare variant association analysis by incorporating multiple functional annotations. We applied MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new associations with lipid traits missed by single-trait analysis, including rare variants within an enhancer of NIPSNAP3A and an intergenic region on chromosome 1.

10.
Circ Genom Precis Med ; 16(6): e004176, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38014529

RESUMO

BACKGROUND: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D. METHODS: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program. We included first-order T2D interaction terms in each model to determine whether CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a joint test to determine whether a CAD variant, or gene-based rare variant set, was associated with the respective subclinical atherosclerosis measures and then further determined whether these loci had a significant interaction test. RESULTS: Using a Bonferroni-corrected significance threshold of P<1.6×10-4, we identified 3 genes (ATP1B1, ARVCF, and LIPG) associated with CAC and 2 genes (ABCG8 and EIF2B2) associated with carotid intima-media thickness and carotid plaque, respectively, through gene-based rare variant set analysis. Both ATP1B1 and ARVCF also had significantly different associations for CAC in T2D cases versus controls. No significant interaction tests were identified through the candidate single-variant analysis. CONCLUSIONS: These results highlight T2D as an important modifier of rare variant associations in CAD loci with CAC.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Humanos , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Espessura Intima-Media Carotídea , Fatores de Risco , Aterosclerose/genética , Genômica
11.
Nat Commun ; 14(1): 6280, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805498

RESUMO

Obesity is a risk factor for type 2 diabetes and cardiovascular disease. However, a substantial proportion of patients with these conditions have a seemingly normal body mass index (BMI). Conversely, not all obese individuals present with metabolic disorders giving rise to the concept of "metabolically healthy obese". We use lipidomic-based models for BMI to calculate a metabolic BMI score (mBMI) as a measure of metabolic dysregulation associated with obesity. Using the difference between mBMI and BMI (mBMIΔ), we identify individuals with a similar BMI but differing in their metabolic health and disease risk profiles. Exercise and diet associate with mBMIΔ suggesting the ability to modify mBMI with lifestyle intervention. Our findings show that, the mBMI score captures information on metabolic dysregulation that is independent of the measured BMI and so provides an opportunity to assess metabolic health to identify "at risk" individuals for targeted intervention and monitoring.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Índice de Massa Corporal , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/metabolismo , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/complicações , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/complicações
12.
Res Sq ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886476

RESUMO

Hemophilia-A (HA) is caused by heterogeneous loss-of-function factor (F)VIII gene (F8)-mutations and deficiencies in plasma-FVIII-activity that impair intrinsic-pathway-mediated coagulation-amplification. The standard-of-care for severe-HA-patients is regular infusions of therapeutic-FVIII-proteins (tFVIIIs) but ~30% develop neutralizing-tFVIII-antibodies called "FVIII-inhibitors (FEIs)" and become refractory. We used the PATH study and ImmunoChip to scan immune-mediated-disease (IMD)-genes for novel and/or replicated genomic-sequence-variations associated with baseline-FEI-status while accounting for non-independence of data due to genetic-relatedness and F8-mutational-heterogeneity. The baseline-FEI-status of 450 North American PATH subjects-206 with black-African-ancestry and 244 with white-European-ancestry-was the dependent variable. The F8-mutation-data and a genetic-relatedness matrix were incorporated into a binary linear-mixed model of genetic association with baseline-FEI-status. We adopted a gene-centric-association-strategy to scan, as candidates, pleiotropic-IMD-genes implicated in the development of either ³2 autoimmune-/autoinflammatory-disorders (AADs) or ³1 AAD and FEIs. Baseline-FEI-status was significantly associated with SNPs assigned to NOS2A (rs117382854; p=3.2E-6) and B3GNT2 (rs10176009; p=5.1E-6), which have functions in anti-microbial-/-tumoral-immunity. Among IMD-genes implicated in FEI-risk previously, we identified strong associations with CTLA4 assigned SNPs (p=2.2E-5). The F8-mutation-effect underlies ~15% of the total heritability for baseline-FEI-status. Additive genetic heritability and SNPs in IMD-genes account for >50% of the patient-specific variability in baseline-FEI-status. Race is a significant determinant independent of F8-mutation-effects and non-F8-genetics.

13.
medRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873296

RESUMO

Machine learning can be used to define subtypes of psychiatric conditions based on shared clinical and biological foundations, presenting a crucial step toward establishing biologically based subtypes of mental disorders. With the goal of identifying subtypes of disease progression in schizophrenia, here we analyzed cross-sectional brain structural magnetic resonance imaging (MRI) data from 4,291 individuals with schizophrenia (1,709 females, age=32.5 years±11.9) and 7,078 healthy controls (3,461 females, age=33.0 years±12.7) pooled across 41 international cohorts from the ENIGMA Schizophrenia Working Group, non-ENIGMA cohorts and public datasets. Using a machine learning approach known as Subtype and Stage Inference (SuStaIn), we implemented a brain imaging-driven classification that identifies two distinct neurostructural subgroups by mapping the spatial and temporal trajectory of gray matter (GM) loss in schizophrenia. Subgroup 1 (n=2,622) was characterized by an early cortical-predominant loss (ECL) with enlarged striatum, whereas subgroup 2 (n=1,600) displayed an early subcortical-predominant loss (ESL) in the hippocampus, amygdala, thalamus, brain stem and striatum. These reconstructed trajectories suggest that the GM volume reduction originates in the Broca's area/adjacent fronto-insular cortex for ECL and in the hippocampus/adjacent medial temporal structures for ESL. With longer disease duration, the ECL subtype exhibited a gradual worsening of negative symptoms and depression/anxiety, and less of a decline in positive symptoms. We confirmed the reproducibility of these imaging-based subtypes across various sample sites, independent of macroeconomic and ethnic factors that differed across these geographic locations, which include Europe, North America and East Asia. These findings underscore the presence of distinct pathobiological foundations underlying schizophrenia. This new imaging-based taxonomy holds the potential to identify a more homogeneous sub-population of individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.

14.
Front Genet ; 14: 1132110, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795246

RESUMO

Background: Socioeconomic status (SES) is a potent environmental determinant of health. To our knowledge, no assessment of genotype-environment interaction has been conducted to consider the joint effects of socioeconomic status and genetics on risk for cardiovascular disease (CVD). We analyzed Mexican American Family Studies (MAFS) data to evaluate the hypothesis that genotype-by-environment interaction (GxE) is an important determinant of variation in CVD risk factors. Methods: We employed a linear mixed model to investigate GxE in Mexican American extended families. We studied two proxies for CVD [Pooled Cohort Equation Risk Scores/Framingham Risk Scores (FRS/PCRS) and carotid artery intima-media thickness (CA-IMT)] in relation to socioeconomic status as determined by Duncan's Socioeconomic Index (SEI), years of education, and household income. Results: We calculated heritability for FRS/PCRS and carotid artery intima-media thickness. There was evidence of GxE due to additive genetic variance heterogeneity and genetic correlation for FRS, PCRS, and CA-IMT measures for education (environment) but not for household income or SEI. Conclusion: The genetic effects underlying CVD are dynamically modulated at the lower end of the SES spectrum. There is a significant change in the genetic architecture underlying the major components of CVD in response to changes in education.

15.
Am J Hum Genet ; 110(10): 1704-1717, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802043

RESUMO

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions in lipid metabolism. Large-scale whole-genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess more associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with measurement of blood lipids and lipoproteins (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare-variant aggregate association tests using the STAAR (variant-set test for association using annotation information) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare-coding variants in nearby protein-coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500-kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variation and rare protein-coding variation at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNAs.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Estudo de Associação Genômica Ampla , Medicina de Precisão , Sequenciamento Completo do Genoma/métodos , Lipídeos/genética , Polimorfismo de Nucleotídeo Único/genética
16.
medRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645892

RESUMO

Background: The CCL2/CCR2 axis governs monocyte trafficking and recruitment to atherosclerotic lesions. Human genetic analyses and population-based studies support an association between circulating CCL2 levels and atherosclerosis. Still, it remains unknown whether pharmacological targeting of CCR2, the main CCL2 receptor, would provide protection against human atherosclerotic disease. Methods: In whole-exome sequencing data from 454,775 UK Biobank participants (40-69 years), we identified predicted loss-of-function (LoF) or damaging missense (REVEL score >0.5) variants within the CCR2 gene. We prioritized variants associated with lower monocyte count (p<0.05) and tested associations with vascular risk factors and risk of atherosclerotic disease over a mean follow-up of 14 years. The results were replicated in a pooled cohort of three independent datasets (TOPMed, deCODE and Penn Medicine BioBank; total n=441,445) and the effect of the most frequent damaging variant was experimentally validated. Results: A total of 45 predicted LoF or damaging missense variants were identified in the CCR2 gene, 4 of which were also significantly associated with lower monocyte count, but not with other white blood cell counts. Heterozygous carriers of these variants were at a lower risk of a combined atherosclerosis outcome, showed a lower burden of atherosclerosis across four vascular beds, and were at a lower lifetime risk of coronary artery disease and myocardial infarction. There was no evidence of association with vascular risk factors including LDL-cholesterol, blood pressure, glycemic status, or C-reactive protein. Using a cAMP assay, we found that cells transfected with the most frequent CCR2 damaging variant (3:46358273:T:A, M249K, 547 carriers, frequency: 0.14%) show a decrease in signaling in response to CCL2. The associations of the M249K variant with myocardial infarction were consistent across cohorts (ORUKB: 0.62 95%CI: 0.39-0.96; ORexternal: 0.64 95%CI: 0.34-1.19; ORpooled: 0.64 95%CI: 0.450.90). In a phenome-wide association study, we found no evidence for higher risk of common infections or mortality among carriers of damaging CCR2 variants. Conclusions: Heterozygous carriers of damaging CCR2 variants have a lower burden of atherosclerosis and lower lifetime risk of myocardial infarction. In conjunction with previous evidence from experimental and epidemiological studies, our findings highlight the translational potential of CCR2-targeting as an atheroprotective approach.

17.
medRxiv ; 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37425772

RESUMO

Long non-coding RNAs (lncRNAs) are known to perform important regulatory functions. Large-scale whole genome sequencing (WGS) studies and new statistical methods for variant set tests now provide an opportunity to assess the associations between rare variants in lncRNA genes and complex traits across the genome. In this study, we used high-coverage WGS from 66,329 participants of diverse ancestries with blood lipid levels (LDL-C, HDL-C, TC, and TG) in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program to investigate the role of lncRNAs in lipid variability. We aggregated rare variants for 165,375 lncRNA genes based on their genomic locations and conducted rare variant aggregate association tests using the STAAR (variant-Set Test for Association using Annotation infoRmation) framework. We performed STAAR conditional analysis adjusting for common variants in known lipid GWAS loci and rare coding variants in nearby protein coding genes. Our analyses revealed 83 rare lncRNA variant sets significantly associated with blood lipid levels, all of which were located in known lipid GWAS loci (in a ±500 kb window of a Global Lipids Genetics Consortium index variant). Notably, 61 out of 83 signals (73%) were conditionally independent of common regulatory variations and rare protein coding variations at the same loci. We replicated 34 out of 61 (56%) conditionally independent associations using the independent UK Biobank WGS data. Our results expand the genetic architecture of blood lipids to rare variants in lncRNA, implicating new therapeutic opportunities.

18.
Mol Psychiatry ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36882501

RESUMO

Genome-wide association studies (GWAS) of mood disorders in large case-control cohorts have identified numerous risk loci, yet pathophysiological mechanisms remain elusive, primarily due to the very small effects of common variants. We sought to discover risk variants with larger effects by conducting a genome-wide association study of mood disorders in a founder population, the Old Order Amish (OOA, n = 1,672). Our analysis revealed four genome-wide significant risk loci, all of which were associated with >2-fold relative risk. Quantitative behavioral and neurocognitive assessments (n = 314) revealed effects of risk variants on sub-clinical depressive symptoms and information processing speed. Network analysis suggested that OOA-specific risk loci harbor novel risk-associated genes that interact with known neuropsychiatry-associated genes via gene interaction networks. Annotation of the variants at these risk loci revealed population-enriched, non-synonymous variants in two genes encoding neurodevelopmental transcription factors, CUX1 and CNOT1. Our findings provide insight into the genetic architecture of mood disorders and a substrate for mechanistic and clinical studies.

19.
Front Neurol ; 14: 1071766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970519

RESUMO

Introduction: The cocktail-party problem refers to the difficulty listeners face when trying to attend to relevant sounds that are mixed with irrelevant ones. Previous studies have shown that solving these problems relies on perceptual as well as cognitive processes. Previously, we showed that speech-reception thresholds (SRTs) on a cocktail-party listening task were influenced by genetic factors. Here, we estimated the degree to which these genetic factors overlapped with those influencing cognitive abilities. Methods: We measured SRTs and hearing thresholds (HTs) in 493 listeners, who ranged in age from 18 to 91 years old. The same individuals completed a cognitive test battery comprising 18 measures of various cognitive domains. Individuals belonged to large extended pedigrees, which allowed us to use variance component models to estimate the narrow-sense heritability of each trait, followed by phenotypic and genetic correlations between pairs of traits. Results: All traits were heritable. The phenotypic and genetic correlations between SRTs and HTs were modest, and only the phenotypic correlation was significant. By contrast, all genetic SRT-cognition correlations were strong and significantly different from 0. For some of these genetic correlations, the hypothesis of complete pleiotropy could not be rejected. Discussion: Overall, the results suggest that there was substantial genetic overlap between SRTs and a wide range of cognitive abilities, including abilities without a major auditory or verbal component. The findings highlight the important, yet sometimes overlooked, contribution of higher-order processes to solving the cocktail-party problem, raising an important caveat for future studies aiming to identify specific genetic factors that influence cocktail-party listening.

20.
Neurology ; 100(18): e1930-e1943, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36927883

RESUMO

BACKGROUND AND OBJECTIVES: Previous studies suggest that lower mitochondrial DNA (mtDNA) copy number (CN) is associated with neurodegenerative diseases. However, whether mtDNA CN in whole blood is related to endophenotypes of Alzheimer disease (AD) and AD-related dementia (AD/ADRD) needs further investigation. We assessed the association of mtDNA CN with cognitive function and MRI measures in community-based samples of middle-aged to older adults. METHODS: We included dementia-free participants from 9 diverse community-based cohorts with whole-genome sequencing in the Trans-Omics for Precision Medicine (TOPMed) program. Circulating mtDNA CN was estimated as twice the ratio of the average coverage of mtDNA to nuclear DNA. Brain MRI markers included total brain, hippocampal, and white matter hyperintensity volumes. General cognitive function was derived from distinct cognitive domains. We performed cohort-specific association analyses of mtDNA CN with AD/ADRD endophenotypes assessed within ±5 years (i.e., cross-sectional analyses) or 5-20 years after blood draw (i.e., prospective analyses) adjusting for potential confounders. We further explored associations stratified by sex and age (<60 vs ≥60 years). Fixed-effects or sample size-weighted meta-analyses were performed to combine results. Finally, we performed mendelian randomization (MR) analyses to assess causality. RESULTS: We included up to 19,152 participants (mean age 59 years, 57% women). Higher mtDNA CN was cross-sectionally associated with better general cognitive function (ß = 0.04; 95% CI 0.02-0.06) independent of age, sex, batch effects, race/ethnicity, time between blood draw and cognitive evaluation, cohort-specific variables, and education. Additional adjustment for blood cell counts or cardiometabolic traits led to slightly attenuated results. We observed similar significant associations with cognition in prospective analyses, although of reduced magnitude. We found no significant associations between mtDNA CN and brain MRI measures in meta-analyses. MR analyses did not reveal a causal relation between mtDNA CN in blood and cognition. DISCUSSION: Higher mtDNA CN in blood is associated with better current and future general cognitive function in large and diverse communities across the United States. Although MR analyses did not support a causal role, additional research is needed to assess causality. Circulating mtDNA CN could serve nevertheless as a biomarker of current and future cognitive function in the community.


Assuntos
Doença de Alzheimer , DNA Mitocondrial , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , Masculino , DNA Mitocondrial/genética , Variações do Número de Cópias de DNA , Estudos Prospectivos , Estudos Transversais , Imageamento por Ressonância Magnética , Cognição , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA