Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Pharmacol ; 58(8): 1035-1043, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29645278

RESUMO

Hyperkalemia is common in patients with heart failure or chronic kidney disease, particularly those taking renin-angiotensin-aldosterone system inhibitors, and can cause arrhythmias and sudden cardiac death. The most widely used treatment, sodium polystyrene sulfonate (SPS), limits gastrointestinal potassium absorption, but has poor palatability. RDX7675 (RDX227675) is the calcium salt of a reengineered polystyrene sulfonate-based resin with improved palatability over SPS. The pharmacodynamic effects and safety of RDX7675 were assessed in a phase 1, single-center, randomized, active-controlled study. Healthy volunteers received nominal active doses of RDX7675 4.6 g twice a day (BID), 4.6 g 3 times a day (TID), 6.9 g BID, 13.7 g daily (QD), 9.2 g TID, or 13.7 g BID (n = 12 each), or equivalent doses of SPS (n = 3 each), for 4 days. RDX7675 dosing increased stool potassium excretion and decreased urinary potassium excretion from baseline. Stool potassium excretion increased by up to 1481 mg/day with RDX7675 (6.9 g BID), and urinary potassium excretion decreased by up to 939 mg/day (13.7 g BID). Similar levels of potassium excretion were observed using QD, BID, or TID dosing of a 13.7 g total daily RDX7675 dose. Few adverse events were reported. In conclusion, repeated oral dosing with RDX7675 over 4 days reduced potassium absorption in healthy volunteers; the results support QD dosing of RDX7675 in future clinical studies.

2.
J Cardiovasc Pharmacol Ther ; 23(3): 244-253, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29130735

RESUMO

INTRODUCTION: Hyperkalemia is a common complication in patients with heart failure or chronic kidney disease, particularly those who are taking inhibitors of the renin-angiotensin-aldosterone system. RDX7675, the calcium salt of a reengineered polystyrene sulfonate-based resin, is a potassium binder that is being investigated as a novel treatment for hyperkalemia. This study evaluated the pharmacodynamic effects of RDX7675 in mice, compared to 2 current treatments, sodium polystyrene sulfonate (SPS) and patiromer. METHODS: Seven groups of 8 male CD-1 mice were given either standard chow (controls) or standard chow containing 4.0% or 6.6% active moiety of RDX7675, patiromer, or SPS for 72 hours. Stool and urine were collected over the final 24 hours of treatment for ion excretion analyses. RESULTS: RDX7675 increased stool potassium (mean 24-hour excretion: 4.0%, 9.19 mg; 6.6%, 18.11 mg; both P < .0001) compared with controls (4.47 mg) and decreased urinary potassium (mean 24-hour excretion: 4.0%, 12.05 mg, P < .001; 6.6%, 6.68 mg, P < .0001; vs controls, 20.38 mg). The potassium-binding capacity of RDX7675 (stool potassium/gram of resin: 4.0%, 1.14 mEq/g; 6.6%, 1.32 mEq/g) was greater (all P < .0001) than for patiromer (4.0%, 0.63 mEq/g; 6.6%, 0.48 mEq/g) or SPS (4.0%, 0.73 mEq/g; 6.6% 0.55 mEq/g). RDX7675 and patiromer decreased urinary sodium (mean 24-hour excretion: 0.07-1.38 mg; all P < .001) compared to controls (5.01 mg). In contrast, SPS increased urinary sodium excretion (4.0%, 13.31 mg; 6.6%, 17.60 mg; both P < .0001) compared to controls. CONCLUSIONS: RDX7675 reduced intestinal potassium absorption and had a greater potassium-binding capacity than patiromer or SPS in mice. The calcium-based resins RDX7675 and patiromer reduced intestinal sodium absorption, unlike sodium-based SPS. These results support further studies in humans to confirm the potential of RDX7675 for the treatment of patients with hyperkalemia.


Assuntos
Resinas de Troca de Cátion/farmacologia , Quelantes/farmacologia , Hiperpotassemia/tratamento farmacológico , Poliestirenos/farmacologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Polímeros/farmacologia , Potássio/metabolismo
3.
Drug Des Devel Ther ; 11: 2663-2673, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919716

RESUMO

BACKGROUND: Hyperkalemia is a potentially life-threatening condition that patients with heart failure or chronic kidney disease, especially those taking renin-angiotensin-aldosterone system inhibitors, are at high risk of developing. Sodium polystyrene sulfonate (SPS), a current treatment, binds potassium within the gastrointestinal tract to reduce potassium absorption. However, poor palatability limits its long-term use. RDX7675, a novel potassium binder in development for the treatment of hyperkalemia, is a calcium salt of a reengineered polystyrene sulfonate-based resin designed to have enhanced palatability. Here, the physical properties and palatability of RDX7675 and SPS are compared. METHODS: RDX7675 and SPS particle sizes were measured using wet dispersion laser diffraction. Palatability was assessed in a randomized, crossover, healthy volunteer study with two visits. At visit 1 (open label), volunteers evaluated high-viscosity, intermediate-viscosity, and water-reconstituted formulations of RDX7675 (all vanilla flavor), and an equivalent reconstituted SPS (Resonium A®). At visit 2 (single-blind), volunteers evaluated RDX7675 as a high-viscosity formulation in vanilla, citrus, and mint flavors, and as intermediate-viscosity, low-viscosity, and reconstituted formulations in citrus flavor. Volunteers used a "sip and spit" technique to rate overall acceptability and seven individual characteristics from 1 ("dislike everything") to 9 ("like extremely"). RESULTS: RDX7675 particles were smaller than SPS particles, with a narrower size range (RDX7675, 80%, 14-52 µm; SPS, 11.3-124.2 µm), and had a smooth, spherical shape, in contrast to the shard-like SPS particles. Reconstituted RDX7675 was considered superior to SPS for five of the seven palatability characteristics and for overall acceptability (median, visit 1: reconstituted RDX7675, 5.0; SPS, 4.0). High-viscosity vanilla was the most highly rated RDX7675 formulation (median overall acceptability, visit 2: 7.0). CONCLUSION: The smaller, more uniformly shaped, spherical particles of RDX7675 resulted in improved palatability over SPS when reconstituted in water. The overall results are promising for future patient acceptability of RDX7675 treatment.


Assuntos
Quelantes/química , Poliestirenos/química , Paladar , Adulto , Idoso , Quelantes/administração & dosagem , Química Farmacêutica , Estudos Cross-Over , Feminino , Aromatizantes/química , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Poliestirenos/administração & dosagem , Método Simples-Cego , Viscosidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA