Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Sci ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38539624

RESUMO

Adventure Therapy (AT) is a therapeutic intervention utilizing the natural environment and adventure activities as tools for psychotherapeutic interventions. It has been demonstrated to be appropriate for the intervention of patients with borderline personality disorder (BPD). This study aims to evaluate the response to AT treatment compared with the response to treatment as usual (TAU), based on cognitive behavioural therapy, in the short and long term, assessing clinical, psychosocial, and functional outcomes; quality of life; and physical health levels. This study extends the sample of and is a follow-up to a pilot study published in 2021, with a sample of 30 patients in the AT group and 10 in the control group. It does not allow us to affirm that AT provides better outcomes than TAU, as the positive effects observed immediately after therapy seem to be attenuated in the long term. Therefore, the effectiveness of long-term psychotherapy did not show differences between AT and TAU therapies in the treatment of BPD patients. However, the effects of intangibles observed during therapy by professionals and patients were not reflected in the measurements collected. Therefore, we believe it is necessary to increase the programme duration, complement treatment with a specific physical health programme, assess results with more specific instruments, and/or move towards a qualitative methodology to measure perceived changes in clinical improvement. New studies are needed to evaluate the results of the proposed changes.

2.
Neurotherapeutics ; 20(6): 1820-1834, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37733208

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons (MNs). Neuregulin-1 (NRG1) is a pleiotropic growth factor that has been shown to be potentially valuable for ALS when supplemented by means of viral-mediated gene therapy. However, these results are inconsistent with other reports. An alternative approach for investigating the therapeutic impact of NRG1 on ALS is the use of transgenic mouse lines with genetically defined NRG1 overexpression. Here, we took advantage of a mouse line with NRG1 type III overexpression in spinal cord α motor neurons (MN) to determine the impact of steadily enhanced NRG1 signalling on mutant superoxide dismutase 1 (SOD1)-induced disease. The phenotype of SOD1G93A-NRG1 double transgenic mice was analysed in detail, including neuropathology and extensive behavioural testing. At least 3 animals per condition and sex were histopathologically assessed, and a minimum of 10 mice per condition and sex were clinically evaluated. The accumulation of misfolded SOD1 (mfSOD1), MN degeneration, and a glia-mediated neuroinflammatory response are pathological hallmarks of ALS progression in SOD1G93A mice. None of these aspects was significantly improved when examined in double transgenic NRG1-SOD1G93A mice. In addition, behavioural testing revealed that NRG1 type III overexpression did not affect the survival of SOD1G93A mice but accelerated disease onset and worsened the motor phenotype.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/genética , Neuregulina-1/genética , Doenças Neurodegenerativas/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Neurônios Motores/patologia , Camundongos Transgênicos
3.
Aging (Albany NY) ; 13(14): 18051-18093, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319911

RESUMO

Besides skeletal muscle wasting, sarcopenia entails morphological and molecular changes in distinct components of the neuromuscular system, including spinal cord motoneurons (MNs) and neuromuscular junctions (NMJs); moreover, noticeable microgliosis has also been observed around aged MNs. Here we examined the impact of two flavonoid-enriched diets containing either green tea extract (GTE) catechins or cocoa flavanols on age-associated regressive changes in the neuromuscular system of C57BL/6J mice. Compared to control mice, GTE- and cocoa-supplementation significantly improved the survival rate of mice, reduced the proportion of fibers with lipofuscin aggregates and central nuclei, and increased the density of satellite cells in skeletal muscles. Additionally, both supplements significantly augmented the number of innervated NMJs and their degree of maturity compared to controls. GTE, but not cocoa, prominently increased the density of VAChT and VGluT2 afferent synapses on MNs, which were lost in control aged spinal cords; conversely, cocoa, but not GTE, significantly augmented the proportion of VGluT1 afferent synapses on aged MNs. Moreover, GTE, but not cocoa, reduced aging-associated microgliosis and increased the proportion of neuroprotective microglial phenotypes. Our data indicate that certain plant flavonoids may be beneficial in the nutritional management of age-related deterioration of the neuromuscular system.


Assuntos
Envelhecimento , Catequina/farmacologia , Suplementos Nutricionais , Junção Neuromuscular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Animais , Cacau/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Chá/química
4.
J Cachexia Sarcopenia Muscle ; 11(6): 1628-1660, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32691534

RESUMO

BACKGROUND: The cellular mechanisms underlying the age-associated loss of muscle mass and function (sarcopenia) are poorly understood, hampering the development of effective treatment strategies. Here, we performed a detailed characterization of age-related pathophysiological changes in the mouse neuromuscular system. METHODS: Young, adult, middle-aged, and old (1, 4, 14, and 24-30 months old, respectively) C57BL/6J mice were used. Motor behavioural and electrophysiological tests and histological and immunocytochemical procedures were carried out to simultaneously analyse structural, molecular, and functional age-related changes in distinct cellular components of the neuromuscular system. RESULTS: Ageing was not accompanied by a significant loss of spinal motoneurons (MNs), although a proportion (~15%) of them in old mice exhibited an abnormally dark appearance. Dark MNs were also observed in adult (~9%) and young (~4%) animals, suggesting that during ageing, some MNs undergo early deleterious changes, which may not lead to MN death. Old MNs were depleted of cholinergic and glutamatergic inputs (~40% and ~45%, respectively, P < 0.01), suggestive of age-associated alterations in MN excitability. Prominent microgliosis and astrogliosis [~93% (P < 0.001) and ~100% (P < 0.0001) increase vs. adults, respectively] were found in old spinal cords, with increased density of pro-inflammatory M1 microglia and A1 astroglia (25-fold and 4-fold increase, respectively, P < 0.0001). Ageing resulted in significant reductions in the nerve conduction velocity and the compound muscle action potential amplitude (~30%, P < 0.05, vs. adults) in old distal plantar muscles. Compared with adult muscles, old muscles exhibited significantly higher numbers of both denervated and polyinnervated neuromuscular junctions, changes in fibre type composition, higher proportion of fibres showing central nuclei and lipofuscin aggregates, depletion of satellite cells, and augmented expression of different molecules related to development, plasticity, and maintenance of neuromuscular junctions, including calcitonin gene-related peptide, growth associated protein 43, agrin, fibroblast growth factor binding protein 1, and transforming growth factor-ß1. Overall, these alterations occurred at varying degrees in all the muscles analysed, with no correlation between the age-related changes observed and myofiber type composition or muscle topography. CONCLUSIONS: Our data provide a global view of age-associated neuromuscular changes in a mouse model of ageing and help to advance understanding of contributing pathways leading to development of sarcopenia.


Assuntos
Gliose , Neurônios Motores , Envelhecimento , Animais , Gliose/patologia , Camundongos , Camundongos Endogâmicos C57BL , Junção Neuromuscular , Sarcopenia/etiologia , Sarcopenia/patologia
5.
J Neuropathol Exp Neurol ; 77(7): 577-597, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29767748

RESUMO

Spinal muscular atrophy (SMA) is characterized by the loss of α-motoneurons (MNs) with concomitant muscle denervation. MN excitability and vulnerability to disease are particularly regulated by cholinergic synaptic afferents (C-boutons), in which Sigma-1 receptor (Sig1R) is concentrated. Alterations in Sig1R have been associated with MN degeneration. Here, we investigated whether a chronic treatment with the Sig1R agonist PRE-084 was able to exert beneficial effects on SMA. We used a model of intermediate SMA, the Smn2B/- mouse, in which we performed a detailed characterization of the histopathological changes that occur throughout the disease. We report that Smn2B/- mice exhibited qualitative differences in major alterations found in mouse models of severe SMA: Smn2B/- animals showed more prominent MN degeneration, early motor axon alterations, marked changes in sensory neurons, and later MN deafferentation that correlated with conspicuous reactive gliosis and altered neuroinflammatory M1/M2 microglial balance. PRE-084 attenuated reactive gliosis, mitigated M1/M2 imbalance, and prevented MN deafferentation in Smn2B/- mice. These effects were also observed in a severe SMA model, the SMNΔ7 mouse. However, the prevention of gliosis and MN deafferentation promoted by PRE-084 were not accompanied by any improvements in clinical outcome or other major pathological changes found in SMA mice.


Assuntos
Ativação de Macrófagos/efeitos dos fármacos , Morfolinas/uso terapêutico , Neurônios Motores/efeitos dos fármacos , Atrofia Muscular Espinal/complicações , Degeneração Neural/prevenção & controle , Neuroglia/efeitos dos fármacos , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Sinapses/efeitos dos fármacos , Animais , Axônios/patologia , Comportamento Animal , Gliose/patologia , Gliose/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Denervação Muscular , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Degeneração Neural/patologia , Junção Neuromuscular/patologia , Receptores sigma/agonistas , Células Receptoras Sensoriais/patologia , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA