Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; : 1-8, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101487

RESUMO

The European Bioanalysis Forum, alongside key industry stakeholders, has been driving the discussions around the implementation of context-of use for biomarker assays to ensure that these assays are validated appropriately depending on their purpose. Insights into understanding why the implementation of context-of-use in assay strategies has also shown that the key stakeholder, or requester for the biomarker data, is responsible for providing the context-of-use statement for all biomarker assay requests. Experts from across the industry haves repeatedly sought a cross-industry recommended format in which the context-of-use statement could be provided. In this manuscript, the European Bioanalysis Forum suggests a format for this.

2.
Sci Adv ; 10(9): eadk1814, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427726

RESUMO

Three distinct pharmacological corrector types (I, II, III) with different binding sites and additive behavior only partially rescue the F508del-cystic fibrosis transmembrane conductance regulator (CFTR) folding and trafficking defect observed in cystic fibrosis. We describe uniquely effective, macrocyclic CFTR correctors that were additive to the known corrector types, exerting a complementary "type IV" corrector mechanism. Macrocycles achieved wild-type-like folding efficiency of F508del-CFTR at the endoplasmic reticulum and normalized CFTR currents in reconstituted patient-derived bronchial epithelium. Using photo-activatable macrocycles, docking studies and site-directed mutagenesis a highly probable binding site and pose for type IV correctors was identified in a cavity between lasso helix-1 (Lh1) and transmembrane helix-1 of membrane spanning domain (MSD)-1, distinct from the known corrector binding sites. Since only F508del-CFTR fragments spanning from Lh1 until MSD2 responded to type IV correctors, these likely promote cotranslational assembly of Lh1, MSD1, and MSD2. Previously corrector-resistant CFTR folding mutants were also robustly rescued, suggesting substantial therapeutic potential for type IV correctors.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Mutação , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA