Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 7(11): 2656-2664, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30351909

RESUMO

Escherichia coli is a well-established and popular host for heterologous expression of proteins. The preference in the choice of synonymous codons (codon bias), however, might differ for the host and the original source of the recombinant protein, constituting a potential bottleneck in production. Codon choice affects the efficiency of translation by a complex and poorly understood mechanism. The availability of certain tRNA species is one of the factors that may curtail the capacity of translation. Here we provide a tRNA-overexpressing strategy that allows the resolution of the codon bias, and boosts the translational capacity of the popular host BL21(DE3) when rare codons are encountered. In the BL21(DE3)-derived strain, called SixPack, copies of the genes corresponding to the six least abundant tRNA species have been assembled in a synthetic fragment and inserted into a rRNA operon. This arrangement, while not interfering with the growth properties of the new strain, allows dynamic control of the transcription of the extra tRNA genes, providing significantly elevated levels of the rare tRNAs in the exponential growth phase. Results from expression assays of a panel of recombinant proteins of diverse origin and codon composition showed that the performance of SixPack surpassed that of the parental BL21(DE3) or a related strain equipped with a rare tRNA-expressing plasmid.


Assuntos
Escherichia coli/genética , Biossíntese de Proteínas/genética , Códon , Escherichia coli/metabolismo , Edição de Genes/métodos , RNA Ribossômico/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/biossíntese
2.
Mol Biol Evol ; 33(5): 1257-69, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26769030

RESUMO

Why are certain bacterial genomes so small and compact? The adaptive genome streamlining hypothesis posits that selection acts to reduce genome size because of the metabolic burden of replicating DNA. To reveal the impact of genome streamlining on cellular traits, we reduced the Escherichia coli genome by up to 20% by deleting regions which have been repeatedly subjects of horizontal transfer in nature. Unexpectedly, horizontally transferred genes not only confer utilization of specific nutrients and elevate tolerance to stresses, but also allow efficient usage of resources to build new cells, and hence influence fitness in routine and stressful environments alike. Genome reduction affected fitness not only by gene loss, but also by induction of a general stress response. Finally, we failed to find evidence that the advantage of smaller genomes would be due to a reduced metabolic burden of replicating DNA or a link with smaller cell size. We conclude that as the potential energetic benefit gained by deletion of short genomic segments is vanishingly small compared with the deleterious side effects of these deletions, selection for reduced DNA synthesis costs is unlikely to shape the evolution of small genomes.


Assuntos
Transferência Genética Horizontal , Tamanho do Genoma , Genoma Bacteriano , Evolução Biológica , Escherichia coli/genética , Evolução Molecular , Genes Bacterianos , Filogenia
3.
BMC Biotechnol ; 13: 82, 2013 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-24093616

RESUMO

BACKGROUND: Interleukin-10 homologues encoded by Herpes viruses such as Epstein-Barr virus (EBV) and human cytomegalovirus (HCMV) hold interesting structural and biological characteristics compared to human interleukin-10 (hIL-10) that render these proteins promising candidates for therapeutic application in inflammatory bowel disease (IBD). Intestinal delivery of cytokines using bacterial carriers as chassis represents a novel approach for treatment of IBD patients. For proof of concept, a Sec-dependent transporter construct was designed for secretory expression of recombinant viral IL-10 proteins in the periplasm of Escherichia coli laboratory strain BL21 (DE3), which might serve as part of a prospective lysis based delivery and containment system. RESULTS: The signal peptide of E. coli outer membrane protein F fused to the mature form of the viral IL-10 proteins enabled successful transport into the periplasm, a compartment which seems crucial for proper assembly of the dimeric configuration of the cytokines. Cytokine concentrations in different bacterial compartments were determined by ELISA and achieved yields of 67.8 ng/ml ± 24.9 ng/ml for HCMV IL-10 and 1.5 µg/ml ± 841.4 ng/ml for EBV IL-10 in the periplasm. Immunoblot analysis was used to confirm the correct size of the E. coli-derived recombinant cytokines. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) as part of the signal transduction cascade after IL-10 receptor interaction, as well as suppression of tumor necrosis factor α (TNF-α) release of lipopolysaccharide-stimulated mouse macrophages were used as read-out assays for proving in vitro biological activity of the E. coli derived, recombinant viral IL-10 counterparts. CONCLUSIONS: In this study, proof of principle is provided that E. coli cells are a suitable chassis for secretory expression of viral IL-10 cytokines encoded by codon-optimized synthetic genes fused to the E. coli ompF signal sequence. In vitro biological activity evidenced by activation of transcription factor STAT3 and suppression of TNF-α in mammalian cell lines was shown to be strictly dependent on export of viral IL-10 proteins into the periplasmic compartment. E. coli might serve as carrier system for in situ delivery of therapeutic molecules in the gut, thus representing a further step in the development of novel approaches for treatment of IBD.


Assuntos
Citomegalovirus/genética , Herpesvirus Humano 4/genética , Interleucina-10/metabolismo , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/genética , Humanos , Doenças Inflamatórias Intestinais/terapia , Interleucina-10/genética , Camundongos , Periplasma/metabolismo , Fosforilação , Porinas/genética , Porinas/metabolismo , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT3/metabolismo , Análise de Sequência de DNA , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Proteínas Virais/genética
4.
J Mol Microbiol Biotechnol ; 22(1): 1-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22353729

RESUMO

Interleukin-10 (IL-10) is a potent anti-inflammatory cytokine, with therapeutic applications in inflammatory bowel disease. For the in situ delivery of IL-10 by Escherichia coli as carrier chassis, a modified transporter was designed with the ability to secrete biologically active IL-10. De novo DNA synthesis comprised a 561-bp fragment encoding the signal sequence of the E. coli outer membrane protein F fused in frame to an E. coli codon-optimized mature human IL-10 gene under control of a T7 promoter. The construct was overexpressed in E. coli laboratory strains, E. coli BL21 (DE3) and E. coli MDS42:T7. The mean concentrations of human IL-10 in the periplasm and culture supernatant of E. coli BL21 (DE3) were 355.8 ± 86.3 and 5.7 ± 1.7 ng/ml, respectively. The molecular mass of the recombinant E. coli-derived human IL-10 was 19 kDa, while under non-reducing conditions the native IL-10 dimer could be demonstrated. Reduction of tumor necrosis factor-α secretion in lipopolysaccharide-stimulated mouse macrophages and detection of the activated form of the transcription factor signal transducer and activator of transcription protein 3 proved the biological activity of the bacteria-produced human IL-10.


Assuntos
Escherichia coli/metabolismo , Interleucina-10/metabolismo , Periplasma/metabolismo , Sinais Direcionadores de Proteínas , Animais , Proteínas da Membrana Bacteriana Externa/genética , Meios de Cultura/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Expressão Gênica , Interleucina-10/química , Interleucina-10/genética , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Peso Molecular , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
5.
Microb Cell Fact ; 11: 11, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22264280

RESUMO

BACKGROUND: Molecular mechanisms generating genetic variation provide the basis for evolution and long-term survival of a population in a changing environment. In stable, laboratory conditions, the variation-generating mechanisms are dispensable, as there is limited need for the cell to adapt to adverse conditions. In fact, newly emerging, evolved features might be undesirable when working on highly refined, precise molecular and synthetic biological tasks. RESULTS: By constructing low-mutation-rate variants, we reduced the evolutionary capacity of MDS42, a reduced-genome E. coli strain engineered to lack most genes irrelevant for laboratory/industrial applications. Elimination of diversity-generating, error-prone DNA polymerase enzymes involved in induced mutagenesis achieved a significant stabilization of the genome. The resulting strain, while retaining normal growth, showed a significant decrease in overall mutation rates, most notably under various stress conditions. Moreover, the error-prone polymerase-free host allowed relatively stable maintenance of a toxic methyltransferase-expressing clone. In contrast, the parental strain produced mutant clones, unable to produce functional methyltransferase, which quickly overgrew the culture to a high ratio (50% of clones in a 24-h induction period lacked functional methyltransferase activity). The surprisingly large stability-difference observed between the strains was due to the combined effects of high stress-induced mutagenesis in the parental strain, growth inhibition by expression of the toxic protein, and selection/outgrowth of mutants no longer producing an active, toxic enzyme. CONCLUSIONS: By eliminating stress-inducible error-prone DNA-polymerases, the genome of the mobile genetic element-free E. coli strain MDS42 was further stabilized. The resulting strain represents an improved host in various synthetic and molecular biological applications, allowing more stable production of growth-inhibiting biomolecules.


Assuntos
Escherichia coli/genética , Engenharia Genética , Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Taxa de Mutação , Plasmídeos , Resposta SOS em Genética , Proteínas Virais/metabolismo
6.
Microb Biotechnol ; 5(4): 466-76, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21910851

RESUMO

Bacteriophages, the historic model organisms facilitating the initiation of molecular biology, are still important candidates of numerous useful or promising biotechnological applications. Development of generally applicable, simple and rapid techniques for their genetic engineering is therefore a validated goal. In this article, we report the use of bacteriophage recombineering with electroporated DNA (BRED), for the first time in a coliphage. With the help of BRED, we removed a copy of mobile element IS1, shown to be active, from the genome of P1vir, a coliphage frequently used in genome engineering procedures. The engineered, IS-free coliphage, P1virdeltaIS, displayed normal plaque morphology, phage titre, burst size and capacity for generalized transduction. When performing head-to-head competition experiments, P1vir could not outperform P1virdeltaIS, further indicating that the specific copy of IS1 plays no direct role in lytic replication. Overall, P1virdeltaIS provides a genome engineering vehicle free of IS contamination, and BRED is likely to serve as a generally applicable tool for engineering bacteriophage genomes in a wide range of taxa.


Assuntos
Bacteriófago P1/genética , Engenharia Genética/métodos , Recombinases/metabolismo , Recombinação Genética , Virologia/métodos , Elementos de DNA Transponíveis , Recombinases/genética , Deleção de Sequência , Transdução Genética , Carga Viral , Ensaio de Placa Viral
7.
J Bacteriol ; 193(8): 2076-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21217001

RESUMO

Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Enterobacteriaceae/genética , Genoma Bacteriano , Enterobacteriaceae/isolamento & purificação , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Plantas/microbiologia , Análise de Sequência de DNA
8.
Microb Cell Fact ; 9: 38, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20492662

RESUMO

BACKGROUND: Evolvability is an intrinsic feature of all living cells. However, newly emerging, evolved features can be undesirable when genetic circuits, designed and fabricated by rational, synthetic biological approaches, are installed in the cell. Streamlined-genome E. coli MDS42 is free of mutation-generating IS elements, and can serve as a host with reduced evolutionary potential. RESULTS: We analyze an extreme case of toxic plasmid clone instability, and show that random host IS element hopping, causing inactivation of the toxic cloned sequences, followed by automatic selection of the fast-growing mutants, can prevent the maintenance of a clone developed for vaccine production. Analyzing the molecular details, we identify a hydrophobic protein as the toxic byproduct of the clone, and show that IS elements spontaneously landing in the cloned fragment relieve the cell from the stress by blocking transcription of the toxic gene. Bioinformatics analysis of sequence reads from early shotgun genome sequencing projects, where clone libraries were constructed and maintained in E. coli, suggests that such IS-mediated inactivation of ectopic genes inhibiting the growth of the E. coli cloning host might happen more frequently than generally anticipated, leading to genomic instability and selection of altered clones. CONCLUSIONS: Delayed genetic adaptation of clean-genome, IS-free MDS42 host improves maintenance of unstable genetic constructs, and is suggested to be beneficial in both laboratory and industrial settings.


Assuntos
Escherichia coli/genética , Biologia Computacional , Elementos de DNA Transponíveis , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Fases de Leitura Aberta , Plasmídeos/genética , Plasmídeos/metabolismo , Plasmídeos/toxicidade , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Microb Cell Fact ; 8: 2, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19128451

RESUMO

BACKGROUND: Deletion of large blocks of nonessential genes that are not needed for metabolic pathways of interest can reduce the production of unwanted by-products, increase genome stability, and streamline metabolism without physiological compromise. Researchers have recently constructed a reduced-genome Escherichia coli strain MDS42 that lacks 14.3% of its chromosome. RESULTS: Here we describe the reengineering of the MDS42 genome to increase the production of the essential amino acid L-threonine. To this end, we over-expressed a feedback-resistant threonine operon (thrA*BC), deleted the genes that encode threonine dehydrogenase (tdh) and threonine transporters (tdcC and sstT), and introduced a mutant threonine exporter (rhtA23) in MDS42. The resulting strain, MDS-205, shows an ~83% increase in L-threonine production when cells are grown by flask fermentation, compared to a wild-type E. coli strain MG1655 engineered with the same threonine-specific modifications described above. And transcriptional analysis revealed the effect of the deletion of non-essential genes on the central metabolism and threonine pathways in MDS-205. CONCLUSION: This result demonstrates that the elimination of genes unnecessary for cell growth can increase the productivity of an industrial strain, most likely by reducing the metabolic burden and improving the metabolic efficiency of cells.

10.
J Bacteriol ; 190(7): 2597-606, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18245285

RESUMO

Escherichia coli DH10B was designed for the propagation of large insert DNA library clones. It is used extensively, taking advantage of properties such as high DNA transformation efficiency and maintenance of large plasmids. The strain was constructed by serial genetic recombination steps, but the underlying sequence changes remained unverified. We report the complete genomic sequence of DH10B by using reads accumulated from the bovine sequencing project at Baylor College of Medicine and assembled with DNAStar's SeqMan genome assembler. The DH10B genome is largely colinear with that of the wild-type K-12 strain MG1655, although it is substantially more complex than previously appreciated, allowing DH10B biology to be further explored. The 226 mutated genes in DH10B relative to MG1655 are mostly attributable to the extensive genetic manipulations the strain has undergone. However, we demonstrate that DH10B has a 13.5-fold higher mutation rate than MG1655, resulting from a dramatic increase in insertion sequence (IS) transposition, especially IS150. IS elements appear to have remodeled genome architecture, providing homologous recombination sites for a 113,260-bp tandem duplication and an inversion. DH10B requires leucine for growth on minimal medium due to the deletion of leuLABCD and harbors both the relA1 and spoT1 alleles causing both sensitivity to nutritional downshifts and slightly lower growth rates relative to the wild type. Finally, while the sequence confirms most of the reported alleles, the sequence of deoR is wild type, necessitating reexamination of the assumed basis for the high transformability of DH10B.


Assuntos
Escherichia coli/genética , Genoma Bacteriano , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Modelos Genéticos , Mutação , Análise de Sequência de DNA
11.
Nucleic Acids Res ; 36(Database issue): D519-23, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17999997

RESUMO

ERIC, the Enteropathogen Resource Integration Center (www.ericbrc.org), is a new web portal serving as a rich source of information about enterobacteria on the NIAID established list of Select Agents related to biodefense-diarrheagenic Escherichia coli, Shigella spp., Salmonella spp., Yersinia enterocolitica and Yersinia pestis. More than 30 genomes have been completely sequenced, many more exist in draft form and additional projects are underway. These organisms are increasingly the focus of studies using high-throughput experimental technologies and computational approaches. This wealth of data provides unprecedented opportunities for understanding the workings of basic biological systems and discovery of novel targets for development of vaccines, diagnostics and therapeutics. ERIC brings information together from disparate sources and supports data comparison across different organisms, analysis of varying data types and visualization of analyses in human and computer-readable formats.


Assuntos
Bases de Dados Genéticas , Enterobacteriaceae/genética , Genoma Bacteriano , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Pesquisa Biomédica , Bioterrorismo , Biologia Computacional , Elementos de DNA Transponíveis , Infecções por Enterobacteriaceae/diagnóstico , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Enterobacteriaceae/terapia , Genômica , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , Alinhamento de Sequência , Software , Integração de Sistemas
12.
J Bacteriol ; 190(3): 1084-96, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18039766

RESUMO

The bacterial stringent response serves as a paradigm for understanding global regulatory processes. It can be triggered by nutrient downshifts or starvation and is characterized by a rapid RelA-dependent increase in the alarmone (p)ppGpp. One hallmark of the response is the switch from maximum-growth-promoting to biosynthesis-related gene expression. However, the global transcription patterns accompanying the stringent response in Escherichia coli have not been analyzed comprehensively. Here, we present a time series of gene expression profiles for two serine hydroxymate-treated cultures: (i) MG1655, a wild-type E. coli K-12 strain, and (ii) an isogenic relADelta251 derivative defective in the stringent response. The stringent response in MG1655 develops in a hierarchical manner, ultimately involving almost 500 differentially expressed genes, while the relADelta251 mutant response is both delayed and limited in scope. We show that in addition to the down-regulation of stable RNA-encoding genes, flagellar and chemotaxis gene expression is also under stringent control. Reduced transcription of these systems, as well as metabolic and transporter-encoding genes, constitutes much of the down-regulated expression pattern. Conversely, a significantly larger number of genes are up-regulated. Under the conditions used, induction of amino acid biosynthetic genes is limited to the leader sequences of attenuator-regulated operons. Instead, up-regulated genes with known functions, including both regulators (e.g., rpoE, rpoH, and rpoS) and effectors, are largely involved in stress responses. However, one-half of the up-regulated genes have unknown functions. How these results are correlated with the various effects of (p)ppGpp (in particular, RNA polymerase redistribution) is discussed.


Assuntos
Escherichia coli K12/genética , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Serina/análogos & derivados , Transcrição Gênica , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Escherichia coli K12/fisiologia , Proteínas de Escherichia coli/genética , Resposta ao Choque Térmico , Ligases/genética , Serina/farmacologia
13.
Adv Exp Med Biol ; 603: 28-42, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17966403

RESUMO

ERIC (Enteropathogen Resource Information Center) is one of the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers for Biodefense and Emerging/Re-emerging Infectious Disease. ERIC serves as a comprehensive information resource for five related pathogens: Yersinia enterocolitica, Yersinia pestis, diarrheagenic E. coli, Shigella spp., and Salmonella spp. ERIC integrates genomics, proteomics, biochemical and microbiological information to facilitate the interpretation and understanding of ERIC pathogens and select related non-pathogens for the advancement of diagnostics, therapeutics, and vaccines. ERIC (www.ericbrc.org) is evolving to provide state-of-the-art analysis tools and data types, such as genome sequencing, comparative genomics, genome polymorphisms, gene expression, proteomics, and pathways as well as expertly curated community genome annotation. Genome sequence and genome annotation data and a variety of analysis and tools for eight strains of Yersinia enterocolitica and Yersinia pestis pathogens (Yersinia pestis biovars Mediaevalis KIM, Mediaevalis 91001, Orientalis CO92, Orientalis IP275, Antiqua Angola, Antiqua Antiqua, Antiqua Nepal516, and Yersinia enterocolitica 8081) and two strains of Yersinia pseudotuberculosis (Yersinia pseudotuberculosis IP32953 and IP31758) are currently available through the ERIC portal. ERIC seeks to maintain a strong collaboration with the scientific community so that we can continue to identify and incorporate the latest research data, tools, and training to best meet the current and future needs of the enteropathogen research community. All tools and data developed under this NIAID contract will be freely available. Please contact info@ericbrc.org for more information.


Assuntos
Bioterrorismo , Doenças Transmissíveis Emergentes/microbiologia , Biologia Computacional , Bases de Dados Factuais , Yersinia/patogenicidade , Genoma Bacteriano , Humanos , National Institute of Allergy and Infectious Diseases (U.S.) , Estados Unidos , Yersinia/genética , Yersiniose/microbiologia , Yersinia pestis/genética , Yersinia pestis/patogenicidade
14.
J Bacteriol ; 189(17): 6447-56, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17601779

RESUMO

Escherichia coli K1 is the leading cause of human neonatal sepsis and meningitis and is important in other clinical syndromes of both humans and domestic animals; in this strain the polysialic acid capsule (K1 antigen) functions by inhibiting innate immunity. Recent discovery of the phase-variable capsular O acetylation mechanism indicated that the O-acetyltransferase gene, neuO, is carried on a putative K1-specific prophage designated CUS-3 (E. L. Deszo, S. M. Steenbergen, D. I. Freedberg, and E. R. Vimr, Proc. Natl. Acad. Sci. USA 102:5564-5569, 2005). Here we describe the isolation and characterization of a CUS-3 derivative (CUS-3a), demonstrating its morphology, lysogenization of a sensitive host, and the distribution of CUS-3 among a collection of 111 different K1 strains. The 40,207-bp CUS-3 genome was annotated from the strain RS218 genomic DNA sequence, indicating that most of the 63 phage open reading frames have their closest homologues in one of seven different lambdoid phages. Translational fusion of a reporter lacZ fragment to the hypervariable poly-Psi domain facilitated measurement of phase variation frequencies, indicating no significant differences between switch rates or effects on rates of the methyl-directed mismatch repair system. PCR analysis of poly-Psi domain length indicated preferential loss or gain of single 5'-AAGACTC-3' nucleotide repeats. Analysis of a K1 strain previously reported as "locked on" indicated a poly-Psi region with the least number of heptad repeats compatible with in-frame neuO expression. The combined results establish CUS-3 as an active mobile contingency locus in E. coli K1, indicating its capacity to mediate population-wide capsule variation.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Colífagos/enzimologia , Colífagos/isolamento & purificação , Escherichia coli/imunologia , Escherichia coli/virologia , Polissacarídeos Bacterianos/imunologia , Polissacarídeos Bacterianos/metabolismo , Ácidos Siálicos/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Cápsulas Bacterianas , Bacteriófago lambda/genética , Colífagos/metabolismo , Colífagos/ultraestrutura , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporter , Genes Virais , Humanos , Lisogenia , Prófagos/enzimologia , Prófagos/genética , Prófagos/isolamento & purificação , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência , beta-Galactosidase/biossíntese , beta-Galactosidase/genética
15.
Biotechnol Bioeng ; 98(5): 1056-70, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17497738

RESUMO

Highly reduced E. coli strains, MDS40, MDS41, and MDS42, lacking approximately 15% of the genome, were grown to high cell densities to test their ability to produce a recombinant protein with high yields. These strains lack all transposons and insertion sequences, cryptic prophage and many genes of unknown function. In addition to improving genetic stability, these deletions may reduce the biosynthetic requirements of the cell potentially allowing more efficient production of recombinant protein. Basic growth parameters and the ability of the strains to produce chloramphenicol acetyltransferase (CAT) under high cell density, batch cultivation were assessed. Although growth rate and recombinant protein production of the reduced genome strains are comparable to the parental MG1655 strain, the reduced genome strains were found to accumulate significant amounts of acetate in the medium at the expense of additional biomass. A number of hypotheses were examined to explain the accumulation of acetate, including oxygen limitation, carbon flux imbalance, and metabolic activity of the recombinant protein. Use of a non-catalytic CAT variant identified the recombinant protein activity as the source of this phenomenon; implications for the metabolic efficiency of the reduced genome strains are discussed.


Assuntos
Cloranfenicol O-Acetiltransferase/metabolismo , Escherichia coli/genética , Deleção de Genes , Proteínas Recombinantes/biossíntese , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Biomassa , Biotecnologia/métodos , Contagem de Células , Cloranfenicol O-Acetiltransferase/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Expressão Gênica/efeitos dos fármacos , Genoma Bacteriano , Glucose/metabolismo , Glicerol/metabolismo , Glicólise/genética , Isopropiltiogalactosídeo/farmacologia , Oxigênio/metabolismo , Fosfato Acetiltransferase/genética , Fosfato Acetiltransferase/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/metabolismo
16.
Metab Eng ; 9(2): 133-41, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17126054

RESUMO

Recently, efforts have been made to improve the properties of Escherichia coli as a recombinant host by 'genomic surgery'-deleting large segments of the E. coli K12 MG1655 genome without scars. These excised segments included K-islands, which contain a high proportion of transposons, insertion sequences, cryptic phage, damaged, and unknown-function genes. The resulting multiple-deletion strain, designated E. coli MDS40, has a 14% (about 700 genes) smaller genome than the parent strain, E. coli MG1655. The multiple-deletion and parent E. coli strains were cultured in fed-batch fermenters to high cell densities on minimal medium to simulate industrial conditions for evaluating growth and recombinant protein production characteristics. Recombinant protein production and by-product levels were quantified at different controlled growth rates. These results indicate that the multiple-deletion strain's growth behavior and recombinant protein productivity closely matched the parent stain. Thus, the multiple-deletion strain E. coli MDS40 provides a suitable foundation for further genomic reduction.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Deleção de Genes , Melhoramento Genético/métodos , Engenharia de Proteínas/métodos , Proteínas Recombinantes/metabolismo , Proliferação de Células , Proteínas de Escherichia coli/classificação , Marcação de Genes/métodos , Genoma Bacteriano/genética , Especificidade da Espécie
17.
Nat Genet ; 38(12): 1406-12, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17086184

RESUMO

We applied whole-genome resequencing of Escherichia coli to monitor the acquisition and fixation of mutations that conveyed a selective growth advantage during adaptation to a glycerol-based growth medium. We identified 13 different de novo mutations in five different E. coli strains and monitored their fixation over a 44-d period of adaptation. We obtained proof that the observed spontaneous mutations were responsible for improved fitness by creating single, double and triple site-directed mutants that had growth rates matching those of the evolved strains. The success of this new genome-scale approach indicates that real-time evolution studies will now be practical in a wide variety of contexts.


Assuntos
Evolução Molecular Direcionada , Escherichia coli/genética , Genoma Bacteriano , Adaptação Fisiológica , Meios de Cultura , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/fisiologia , Genótipo , Glicerol/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Seleção Genética , Fatores de Tempo
18.
Infect Immun ; 74(9): 5408-13, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16926437

RESUMO

The complete nucleotide sequence was determined for pMAR7, an enteropathogenic Escherichia coli (EPEC) adherence factor (EAF) plasmid that contains genes encoding a type IV attachment pilus (Bfp) and the global virulence regulator per. Prototypic EAF plasmid pMAR7 is self-transmissible, unlike the smaller EAF plasmid pB171, which has no genes encoding conjugative functions. The tra locus, a highly conserved 33-kb segment found in pMAR7, is similar to the tra (conjugation) region of the F plasmid. ISEc13 copies flanking the pMAR7 tra region could potentially mobilize or delete the tra genes. Hybridization of 134 EPEC strains showed that a complete tra region is present only in strains of the EPEC1 clonal group. This study confirms EPEC's potential for dissemination of virulence attributes by horizontal transfer of the EAF plasmid.


Assuntos
Aderência Bacteriana/genética , Escherichia coli/patogenicidade , Plasmídeos/genética , Sequência de Bases , Conjugação Genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Genes Bacterianos , Dados de Sequência Molecular , Análise de Sequência de DNA
19.
J Infect Dis ; 194(3): 358-64, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16826484

RESUMO

BACKGROUND: Escherichia coli K1 is the most common gram-negative bacterium causing neonatal meningitis, but the mechanisms by which E. coli K1 causes meningitis are not clear. METHODS: We identified 22 E. coli RS218-derived genomic islands (RDIs), using a comparative genome analysis of meningitis-causing E. coli K1 strain RS218 (O18:K1:H7) and laboratory K-12 strain MG1655. Series of RDI deletion mutants were constructed and examined for phenotypes relevant to E. coli K1 meningitis. RESULTS: We identified 9 RDI deletion mutants (RDI 1, 4, 7, 12, 13, 16, 20, 21, and 22) that exhibited defects in meningitis development. RDI 16 and 21 mutants had profound defects in the induction of a high level of bacteremia in neonatal rats, and RDI 4 mutants exhibited a moderate defect in the induction of bacteremia. RDI 1 and 22 mutants showed defects in the ability to invade human brain microvascular endothelial cells (HBMECs), and RDI 12 mutants were defective in the ability to bind to HBMECs. RDI 13 and 20 mutants were defective in the ability to both bind to and invade HBMECs. RDI 7 mutants were defective in the induction of bacteremia and in the ability to both bind to and invade HBMECs. CONCLUSIONS: These results provide a framework for the future discovery and analysis of bacteremia and meningitis caused by E. coli K1 strain RS218.


Assuntos
Escherichia coli/genética , Ilhas Genômicas , Meningite devida a Escherichia coli/microbiologia , Animais , Bacteriemia/microbiologia , Sequência de Bases , Escherichia coli/isolamento & purificação , Feminino , Deleção de Genes , Humanos , Masculino , Dados de Sequência Molecular , Gravidez , Complicações Infecciosas na Gravidez/microbiologia , Ratos , Ratos Sprague-Dawley , Fatores de Virulência/genética
20.
Mol Microbiol ; 60(4): 1058-75, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16677314

RESUMO

IscR is an iron-sulphur (Fe-S) cluster-containing transcription factor that represses transcription of the operon containing its own gene and the iscSUA-hscBA-fdx genes, whose products are involved in Fe-S cluster biogenesis. In this study, global transcriptional profiling of Escherichia coli IscR(+) and IscR(-) strains grown under aerobic and anaerobic conditions indicated that 40 genes in 20 predicted operons were regulated by IscR. DNase I footprinting and/or in vitro transcription reactions identified seven new promoters under direct IscR control. Among these were genes encoding known or proposed functions in Fe-S cluster biogenesis (sufABCDSE, yadR and yhgI) and Fe-S cluster-containing anaerobic respiratory enzymes (hyaABCDEF, hybOABCDEFG and napFDAGHBC). The finding that IscR repressed expression of the hyaA, hybO and napF promoters specifically under aerobic growth conditions suggests a new mechanism to explain their upregulation under anaerobic growth conditions. Phylogenetic footprinting of the DNase I protected regions of seven promoters implies that there are at least two different classes of IscR binding sites conserved among many bacteria. The findings presented here indicate a more general role of IscR in the regulation of Fe-S cluster biogenesis and that IscR contributes to the O(2) regulation of several promoters controlling the expression of anaerobic Fe-S proteins.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/genética , Oxigênio/fisiologia , Fatores de Transcrição/metabolismo , Anaerobiose/genética , Sequência de Bases , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Perfilação da Expressão Gênica , Genes Bacterianos/genética , Dados de Sequência Molecular , Família Multigênica/genética , Estresse Oxidativo/genética , Regiões Promotoras Genéticas/genética , Superóxido Dismutase/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA