Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
JCO Precis Oncol ; 6: e2100280, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35294224

RESUMO

PURPOSE: Patients with metastatic triple-negative breast cancer (mTNBC) have poor outcomes. The Intensive Trial of Omics in Cancer (ITOMIC) sought to determine the feasibility and potential efficacy of informing treatment decisions through multiple biopsies of mTNBC deposits longitudinally over time, accompanied by analysis using a distributed network of experts. METHODS: Thirty-one subjects were enrolled and 432 postenrollment biopsies performed (clinical and study-directed) of which 332 were study-directed. Molecular profiling included whole-genome sequencing or whole-exome sequencing, cancer-associated gene panel sequencing, RNA-sequencing, and immunohistochemistry. To afford time for analysis, subjects were initially treated with cisplatin (19 subjects), or another treatment they had not received previously. The results were discussed at a multi-institutional ITOMIC Tumor Board, and a report transmitted to the subject's oncologist who arrived at the final treatment decision in conjunction with the subject. Assistance was provided to access treatments that were predicted to be effective. RESULTS: Multiple biopsies in single settings and over time were safe, and comprehensive analysis was feasible. Two subjects were found to have lung cancer, one had carcinoma of unknown primary site, tumor samples from three subjects were estrogen receptor-positive and from two others, human epidermal growth factor receptor 2-positive. Two subjects withdrew. Thirty-four of 112 recommended treatments were accessed using approved drugs, clinical trials, and single-patient investigational new drugs. After excluding the three subjects with nonbreast cancers and the two subjects who withdrew, 22 of 26 subjects (84.6%) received at least one ITOMIC Tumor Board-recommended treatment. CONCLUSION: Further exploration of this approach in patients with mTNBC is merited.


Assuntos
Neoplasias de Mama Triplo Negativas , Cisplatino/uso terapêutico , Estudos de Viabilidade , Humanos , Técnicas de Diagnóstico Molecular , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
2.
Dev Cell ; 52(2): 236-250.e7, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31991105

RESUMO

Regulation of embryonic diapause, dormancy that interrupts the tight connection between developmental stage and time, is still poorly understood. Here, we characterize the transcriptional and metabolite profiles of mouse diapause embryos and identify unique gene expression and metabolic signatures with activated lipolysis, glycolysis, and metabolic pathways regulated by AMPK. Lipolysis is increased due to mTORC2 repression, increasing fatty acids to support cell survival. We further show that starvation in pre-implantation ICM-derived mouse ESCs induces a reversible dormant state, transcriptionally mimicking the in vivo diapause stage. During starvation, Lkb1, an upstream kinase of AMPK, represses mTOR, which induces a reversible glycolytic and epigenetically H4K16Ac-negative, diapause-like state. Diapause furthermore activates expression of glutamine transporters SLC38A1/2. We show by genetic and small molecule inhibitors that glutamine transporters are essential for the H4K16Ac-negative, diapause state. These data suggest that mTORC1/2 inhibition, regulated by amino acid levels, is causal for diapause metabolism and epigenetic state.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Blastocisto/metabolismo , Embrião de Mamíferos/citologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células-Tronco Embrionárias/citologia , Técnicas de Inativação de Genes , Camundongos
3.
Cytometry A ; 93(12): 1220-1225, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30277660

RESUMO

Circulating tumor cells (CTCs) can reliably be identified in cancer patients and are associated with clinical outcome. Next-generation "liquid biopsy" technologies will expand CTC diagnostic investigation to include phenotypic characterization and single-cell molecular analysis. We describe here a rare cell analysis platform designed to comprehensively collect and identify CTCs, enable multi-parameter assessment of individual CTCs, and retrieve single cells for molecular analysis. The platform has the following four integrated components: 1) density-based separation of the CTC-containing blood fraction and sample deposition onto microscope slides; 2) automated multiparameter fluorescence staining; 3) image scanning, analysis, and review; and 4) mechanical CTC retrieval. The open platform utilizes six fluorescence channels, of which four channels are used to identify CTC and two channels are available for investigational biomarkers; a prototype assay that allows three investigational biomarker channels has been developed. Single-cell retrieval from fixed slides is compatible with whole genome amplification methods for genomic analysis. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.


Assuntos
Neoplasias/patologia , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais/genética , Contagem de Células/métodos , Linhagem Celular Tumoral , Separação Celular/métodos , Fluorescência , Humanos , Biópsia Líquida/métodos , Neoplasias/genética , Análise de Célula Única/métodos
4.
Methods ; 142: 59-73, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29382556

RESUMO

The folding and three-dimensional (3D) organization of chromatin in the nucleus critically impacts genome function. The past decade has witnessed rapid advances in genomic tools for delineating 3D genome architecture. Among them, chromosome conformation capture (3C)-based methods such as Hi-C are the most widely used techniques for mapping chromatin interactions. However, traditional Hi-C protocols rely on restriction enzymes (REs) to fragment chromatin and are therefore limited in resolution. We recently developed DNase Hi-C for mapping 3D genome organization, which uses DNase I for chromatin fragmentation. DNase Hi-C overcomes RE-related limitations associated with traditional Hi-C methods, leading to improved methodological resolution. Furthermore, combining this method with DNA capture technology provides a high-throughput approach (targeted DNase Hi-C) that allows for mapping fine-scale chromatin architecture at exceptionally high resolution. Hence, targeted DNase Hi-C will be valuable for delineating the physical landscapes of cis-regulatory networks that control gene expression and for characterizing phenotype-associated chromatin 3D signatures. Here, we provide a detailed description of method design and step-by-step working protocols for these two methods.


Assuntos
Mapeamento Cromossômico/métodos , Desoxirribonuclease I/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imageamento Tridimensional/métodos , Imagem Molecular/métodos , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/genética , Mapeamento Cromossômico/instrumentação , Reagentes de Ligações Cruzadas/química , Enzimas de Restrição do DNA/química , Enzimas de Restrição do DNA/metabolismo , Desoxirribonuclease I/química , Formaldeído/química , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Imageamento Tridimensional/instrumentação , Imagem Molecular/instrumentação , Técnicas de Cultura de Tecidos/instrumentação , Técnicas de Cultura de Tecidos/métodos , Sequenciamento Completo do Genoma/instrumentação , Sequenciamento Completo do Genoma/métodos
5.
Nat Commun ; 9(1): 42, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298978

RESUMO

Cancers that appear pathologically similar often respond differently to the same drug regimens. Methods to better match patients to drugs are in high demand. We demonstrate a promising approach to identify robust molecular markers for targeted treatment of acute myeloid leukemia (AML) by introducing: data from 30 AML patients including genome-wide gene expression profiles and in vitro sensitivity to 160 chemotherapy drugs, a computational method to identify reliable gene expression markers for drug sensitivity by incorporating multi-omic prior information relevant to each gene's potential to drive cancer. We show that our method outperforms several state-of-the-art approaches in identifying molecular markers replicated in validation data and predicting drug sensitivity accurately. Finally, we identify SMARCA4 as a marker and driver of sensitivity to topoisomerase II inhibitors, mitoxantrone, and etoposide, in AML by showing that cell lines transduced to have high SMARCA4 expression reveal dramatically increased sensitivity to these agents.


Assuntos
DNA Helicases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mieloide Aguda/genética , Aprendizado de Máquina , Proteínas Nucleares/genética , Medicina de Precisão/métodos , Fatores de Transcrição/genética , Algoritmos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Linhagem Celular , Conjuntos de Dados como Assunto , Etoposídeo/farmacologia , Etoposídeo/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico
6.
Sci Rep ; 7(1): 16943, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208983

RESUMO

A comprehensive characterization of tumor genetic heterogeneity is critical for understanding how cancers evolve and escape treatment. Although many algorithms have been developed for capturing tumor heterogeneity, they are designed for analyzing either a single type of genomic aberration or individual biopsies. Here we present THEMIS (Tumor Heterogeneity Extensible Modeling via an Integrative System), which allows for the joint analysis of different types of genomic aberrations from multiple biopsies taken from the same patient, using a dynamic graphical model. Simulation experiments demonstrate higher accuracy of THEMIS over its ancestor, TITAN. The heterogeneity analysis results from THEMIS are validated with single cell DNA sequencing from a clinical tumor biopsy. When THEMIS is used to analyze tumor heterogeneity among multiple biopsies from the same patient, it helps to reveal the mutation accumulation history, track cancer progression, and identify the mutations related to treatment resistance. We implement our model via an extensible modeling platform, which makes our approach open, reproducible, and easy for others to extend.


Assuntos
Biópsia/métodos , Modelos Biológicos , Neoplasias/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Algoritmos , Teorema de Bayes , Evolução Clonal , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Feminino , Humanos , Mutação , Neoplasias/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Análise de Célula Única , Transcriptoma , Neoplasias de Mama Triplo Negativas/patologia
7.
PLoS One ; 12(1): e0171096, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28135323

RESUMO

Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS) that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP), intercellular adhesion molecule 4 (ICAM-4), CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.


Assuntos
Antígenos CD34/metabolismo , Células da Medula Óssea/citologia , Células Eritroides/citologia , Sangue Fetal/citologia , Macrófagos/citologia , Células da Medula Óssea/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Eritroblastos/citologia , Eritroblastos/efeitos dos fármacos , Células Eritroides/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Monócitos/citologia , Monócitos/efeitos dos fármacos , Molécula 1 de Adesão de Célula Vascular/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-32913975

RESUMO

PURPOSE: Multidimensional molecular analysis of tumor tissue intensively over space and time can provide insight into how cancers evolve and escape treatment. Attitudes of participants in such trials have not been assessed. We explored patient views regarding an intensive study incorporating multiple biopsies, multidimensional molecular testing, and drug response predictions that are reported to the oncologist and patient. PATIENTS AND METHODS: A structured, self-administered survey was conducted among the first 15 patients enrolled in ITOMIC-001 (Intensive Trial of Omics in Cancer). Patients with metastatic triple-negative breast cancer were accrued at two sites in Washington state. Surveys containing 17 items were administered at enrollment and after the return of results. Surveys explored perceptions regarding risks, personal benefits, benefits to others, uncertainties associated with interpreting complex molecular results, concerns regarding multiple biopsies, and potential loss of confidentiality. At follow-up, three additional unique items explored patient coping. RESULTS: All participants expressed a strong desire for their experiences to benefit others, and all perceived a higher likelihood of deriving benefit than described during detailed consent discussions. Loss of confidentiality ranked lowest among patient concerns. Despite acknowledging uncertainties and risks inherent in complex molecular testing for clinical reporting, participants wanted access to findings in evaluating treatment choices, even if the best available evidence was weak. Follow-up surveys demonstrated relatively little change in attitudes, although concern about study biopsies generally declined. Study participation helped several patients cope better with their disease. CONCLUSION: In advanced breast cancer, these findings demonstrate the feasibility of engaging motivated patients in trials that navigate the uncertainties associated with intensive spatial and longitudinal multidimensional molecular testing for the purpose of advancing precision medicine.

10.
Nat Protoc ; 11(11): 2104-21, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27685100

RESUMO

With the advent of massively parallel sequencing, considerable work has gone into adapting chromosome conformation capture (3C) techniques to study chromosomal architecture at a genome-wide scale. We recently demonstrated that the inactive murine X chromosome adopts a bipartite structure using a novel 3C protocol, termed in situ DNase Hi-C. Like traditional Hi-C protocols, in situ DNase Hi-C requires that chromatin be chemically cross-linked, digested, end-repaired, and proximity-ligated with a biotinylated bridge adaptor. The resulting ligation products are optionally sheared, affinity-purified via streptavidin bead immobilization, and subjected to traditional next-generation library preparation for Illumina paired-end sequencing. Importantly, in situ DNase Hi-C obviates the dependence on a restriction enzyme to digest chromatin, instead relying on the endonuclease DNase I. Libraries generated by in situ DNase Hi-C have a higher effective resolution than traditional Hi-C libraries, which makes them valuable in cases in which high sequencing depth is allowed for, or when hybrid capture technologies are expected to be used. The protocol described here, which involves ∼4 d of bench work, is optimized for the study of mammalian cells, but it can be broadly applicable to any cell or tissue of interest, given experimental parameter optimization.


Assuntos
Mapeamento Cromossômico/métodos , Desoxirribonucleases/metabolismo , Biotinilação , Formaldeído/metabolismo , Biblioteca Gênica , Humanos
11.
J Natl Compr Canc Netw ; 14(1): 8-17, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26733551

RESUMO

Accelerating cancer research is expected to require new types of clinical trials. This report describes the Intensive Trial of OMics in Cancer (ITOMIC) and a participant with triple-negative breast cancer metastatic to bone, who had markedly elevated circulating tumor cells (CTCs) that were monitored 48 times over 9 months. A total of 32 researchers from 14 institutions were engaged in the patient's evaluation; 20 researchers had no prior involvement in patient care and 18 were recruited specifically for this patient. Whole-exome sequencing of 3 bone marrow samples demonstrated a novel ROS1 variant that was estimated to be present in most or all tumor cells. After an initial response to cisplatin, a hypothesis of crizotinib sensitivity was disproven. Leukapheresis followed by partial CTC enrichment allowed for the development of a differential high-throughput drug screen and demonstrated sensitivity to investigational BH3-mimetic inhibitors of BCL-2 that could not be tested in the patient because requests to the pharmaceutical sponsors were denied. The number and size of CTC clusters correlated with clinical status and eventually death. Focusing the expertise of a distributed network of investigators on an intensively monitored patient with cancer can generate high-resolution views of the natural history of cancer and suggest new opportunities for therapy. Optimization requires access to investigational drugs.


Assuntos
Redes Comunitárias , Pesquisadores , Neoplasias de Mama Triplo Negativas/diagnóstico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/secundário , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Prova Pericial , Feminino , Seguimentos , Humanos , Leucaférese , Estudos Longitudinais , Pessoa de Meia-Idade , Metástase Neoplásica , Células Neoplásicas Circulantes , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
12.
Nat Cell Biol ; 17(12): 1523-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26571212

RESUMO

For nearly a century developmental biologists have recognized that cells from embryos can differ in their potential to differentiate into distinct cell types. Recently, it has been recognized that embryonic stem cells derived from both mice and humans exhibit two stable yet epigenetically distinct states of pluripotency: naive and primed. We now show that nicotinamide N-methyltransferase (NNMT) and the metabolic state regulate pluripotency in human embryonic stem cells (hESCs).  Specifically, in naive hESCs, NNMT and its enzymatic product 1-methylnicotinamide are highly upregulated, and NNMT is required for low S-adenosyl methionine (SAM) levels and the H3K27me3 repressive state. NNMT consumes SAM in naive cells, making it unavailable for histone methylation that represses Wnt and activates the HIF pathway in primed hESCs. These data support the hypothesis that the metabolome regulates the epigenetic landscape of the earliest steps in human development.


Assuntos
Diferenciação Celular , Epigênese Genética/genética , Células-Tronco Embrionárias Humanas/metabolismo , Metaboloma , Animais , Western Blotting , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica/métodos , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Lisina/metabolismo , Espectrometria de Massas , Metabolômica/métodos , Metilação , Camundongos , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Proteômica/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , S-Adenosilmetionina/metabolismo , Transdução de Sinais
13.
BMC Cancer ; 15: 360, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25944336

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are malignant cells that have migrated from solid cancers into the blood, where they are typically present in rare numbers. There is great interest in using CTCs to monitor response to therapies, to identify clinically actionable biomarkers, and to provide a non-invasive window on the molecular state of a tumor. Here we characterize the performance of the AccuCyte®--CyteFinder® system, a comprehensive, reproducible and highly sensitive platform for collecting, identifying and retrieving individual CTCs from microscopic slides for molecular analysis after automated immunofluorescence staining for epithelial markers. METHODS: All experiments employed a density-based cell separation apparatus (AccuCyte) to separate nucleated cells from the blood and transfer them to microscopic slides. After staining, the slides were imaged using a digital scanning microscope (CyteFinder). Precisely counted model CTCs (mCTCs) from four cancer cell lines were spiked into whole blood to determine recovery rates. Individual mCTCs were removed from slides using a single-cell retrieval device (CytePicker™) for whole genome amplification and subsequent analysis by PCR and Sanger sequencing, whole exome sequencing, or array-based comparative genomic hybridization. Clinical CTCs were evaluated in blood samples from patients with different cancers in comparison with the CellSearch® system. RESULTS: AccuCyte--CyteFinder presented high-resolution images that allowed identification of mCTCs by morphologic and phenotypic features. Spike-in mCTC recoveries were between 90 and 91%. More than 80% of single-digit spike-in mCTCs were identified and even a single cell in 7.5 mL could be found. Analysis of single SKBR3 mCTCs identified presence of a known TP53 mutation by both PCR and whole exome sequencing, and confirmed the reported karyotype of this cell line. Patient sample CTC counts matched or exceeded CellSearch CTC counts in a small feasibility cohort. CONCLUSION: The AccuCyte--CyteFinder system is a comprehensive and sensitive platform for identification and characterization of CTCs that has been applied to the assessment of CTCs in cancer patient samples as well as the isolation of single cells for genomic analysis. It thus enables accurate non-invasive monitoring of CTCs and evolving cancer biology for personalized, molecularly-guided cancer treatment.


Assuntos
Separação Celular/métodos , Células Neoplásicas Circulantes , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Masculino , Neoplasias da Próstata/patologia , Análise de Célula Única
14.
Cell Rep ; 11(4): 630-44, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25892236

RESUMO

Triple-negative breast cancer is a heterogeneous disease characterized by poor clinical outcomes and a shortage of targeted treatment options. To discover molecular features of triple-negative breast cancer, we performed quantitative proteomics analysis of twenty human-derived breast cell lines and four primary breast tumors to a depth of more than 12,000 distinct proteins. We used this data to identify breast cancer subtypes at the protein level and demonstrate the precise quantification of biomarkers, signaling proteins, and biological pathways by mass spectrometry. We integrated proteomics data with exome sequence resources to identify genomic aberrations that affect protein expression. We performed a high-throughput drug screen to identify protein markers of drug sensitivity and understand the mechanisms of drug resistance. The genome and proteome provide complementary information that, when combined, yield a powerful engine for therapeutic discovery. This resource is available to the cancer research community to catalyze further analysis and investigation.


Assuntos
Biomarcadores Tumorais/metabolismo , Proteoma/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Proteoma/efeitos dos fármacos , Proteoma/genética , Neoplasias de Mama Triplo Negativas/genética
15.
Nucleic Acids Res ; 43(3): 1332-44, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25583238

RESUMO

We define a new category of candidate tumor drivers in cancer genome evolution: 'selected expression regulators' (SERs)-genes driving dysregulated transcriptional programs in cancer evolution. The SERs are identified from genome-wide tumor expression data with a novel method, namely SPARROW ( SPAR: se selected exp R: essi O: n regulators identified W: ith penalized regression). SPARROW uncovers a previously unknown connection between cancer expression variation and driver events, by using a novel sparse regression technique. Our results indicate that SPARROW is a powerful complementary approach to identify candidate genes containing driver events that are hard to detect from sequence data, due to a large number of passenger mutations and lack of comprehensive sequence information from a sufficiently large number of samples. SERs identified by SPARROW reveal known driver mutations in multiple human cancers, along with known cancer-associated processes and survival-associated genes, better than popular methods for inferring gene expression networks. We demonstrate that when applied to acute myeloid leukemia expression data, SPARROW identifies an apoptotic biomarker (PYCARD) for an investigational drug obatoclax. The PYCARD and obatoclax association is validated in 30 AML patient samples.


Assuntos
Neoplasias Encefálicas/genética , Perfilação da Expressão Gênica , Glioblastoma/genética , Leucemia Mieloide Aguda/genética , Redes Reguladoras de Genes , Humanos , Mutação
17.
Blood ; 125(6): 1025-33, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25343958

RESUMO

Several approaches for controlling hematopoietic stem and progenitor cell expansion, lineage commitment, and maturation have been investigated for improving clinical interventions. We report here that amino acid substitutions in a thrombopoietin receptor (Mpl)--containing cell growth switch (CGS) extending receptor stability improve the expansion capacity of human cord blood CD34(+) cells in the absence of exogenous cytokines. Activation of this CGS with a chemical inducer of dimerization (CID) expands total cells 99-fold, erythrocytes 70-fold, megakaryocytes 0.5-fold, and CD34(+) stem/progenitor cells 4.4-fold by 21 days of culture. Analysis of cells in these expanded populations identified a CID-dependent bipotent erythrocyte-megakaryocyte precursor (PEM) population, and a CID-independent macrophage population. The CD235a(+)/CD41a(+) PEM population constitutes up to 13% of the expansion cultures, can differentiate into erythrocytes or megakaryocytes, exhibits very little expansion capacity, and exists at very low levels in unexpanded cord blood. The CD206(+) macrophage population constitutes up to 15% of the expansion cultures, exhibits high-expansion capacity, and is physically associated with differentiating erythroblasts. Taken together, these studies describe a fundamental enhancement of the CGS expansion platform, identify a novel precursor population in the erythroid/megakaryocytic differentiation pathway of humans, and implicate an erythropoietin-independent, macrophage-associated pathway supporting terminal erythropoiesis in this expansion system.


Assuntos
Substituição de Aminoácidos , Células Eritroides/citologia , Eritropoese , Megacariócitos/citologia , Receptores de Trombopoetina/genética , Animais , Antígenos CD34/análise , Linhagem Celular , Proliferação de Células , Células Cultivadas , Células Eritroides/metabolismo , Sangue Fetal/citologia , Humanos , Megacariócitos/metabolismo , Camundongos , Glicoproteína IIb da Membrana de Plaquetas/análise , Receptores de Trombopoetina/metabolismo
18.
PLoS Comput Biol ; 10(7): e1003703, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25010360

RESUMO

Cancers arise from successive rounds of mutation and selection, generating clonal populations that vary in size, mutational content and drug responsiveness. Ascertaining the clonal composition of a tumor is therefore important both for prognosis and therapy. Mutation counts and frequencies resulting from next-generation sequencing (NGS) potentially reflect a tumor's clonal composition; however, deconvolving NGS data to infer a tumor's clonal structure presents a major challenge. We propose a generative model for NGS data derived from multiple subsections of a single tumor, and we describe an expectation-maximization procedure for estimating the clonal genotypes and relative frequencies using this model. We demonstrate, via simulation, the validity of the approach, and then use our algorithm to assess the clonal composition of a primary breast cancer and associated metastatic lymph node. After dividing the tumor into subsections, we perform exome sequencing for each subsection to assess mutational content, followed by deep sequencing to precisely count normal and variant alleles within each subsection. By quantifying the frequencies of 17 somatic variants, we demonstrate that our algorithm predicts clonal relationships that are both phylogenetically and spatially plausible. Applying this method to larger numbers of tumors should cast light on the clonal evolution of cancers in space and time.


Assuntos
Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Biologia Computacional/métodos , Algoritmos , Neoplasias da Mama/metabolismo , Simulação por Computador , Feminino , Genótipo , Humanos , Filogenia
19.
Cancer Immunol Res ; 2(4): 301-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24764577

RESUMO

Janus kinase-2 (JAK2) supports breast cancer growth, and clinical trials testing JAK2 inhibitors are under way. In addition to the tumor epithelium, JAK2 is also expressed in other tissues including immune cells; whether the JAK2 mRNA levels in breast tumors correlate with outcomes has not been evaluated. Using a case-control design, JAK2 mRNA was measured in 223 archived breast tumors and associations with distant recurrence were evaluated by logistic regression. The frequency of correct pairwise comparisons of patient rankings based on JAK2 levels versus survival outcomes, the concordance index (CI), was evaluated using data from 2,460 patients in three cohorts. In the case-control study, increased JAK2 was associated with a decreasing risk of recurrence (multivariate P = 0.003, n = 223). Similarly, JAK2 was associated with a protective CI (<0.5) in the public cohorts: NETHERLANDS CI = 0.376, n = 295; METABRIC CI = 0.462, n = 1,981; OSLOVAL CI = 0.452, n = 184. Furthermore, JAK2 was strongly correlated with the favorable prognosis LYM metagene signature for infiltrating T cells (r = 0.5; P < 2 × 10(-16); n = 1,981) and with severe lymphocyte infiltration (P = 0.00003, n = 156). Moreover, the JAK1/2 inhibitor ruxolitinib potently inhibited the anti-CD3-dependent production of IFN-γ, a marker of the differentiation of Th cells along the tumor-inhibitory Th1 pathway. The potential for JAK2 inhibitors to interfere with the antitumor capacities of T cells should be evaluated.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Expressão Gênica , Janus Quinase 2/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Feminino , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , RNA Mensageiro/genética , Recidiva , Resultado do Tratamento
20.
Proc Natl Acad Sci U S A ; 111(12): 4484-9, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24623855

RESUMO

The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222-9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.


Assuntos
Células-Tronco Embrionárias/citologia , Animais , Linhagem da Célula , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Transgenes , Inativação do Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA