Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Res ; 41(8): 1659-66, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17353028

RESUMO

Inactivation of the pathogenic Escherichia coli serotype O157:H7 and a non-pathogenic E. coli strain isolated from dairy cattle manure was evaluated with batch tests at 50 and 55 degrees C in biosolids from a thermophilic anaerobic digester treating the manure. Using differential-selective plating on sorbitol-MacConkey (SMAC) agar to quantify E. coli, the decline in concentrations of both the sorbitol-negative (putative E. coli O157:H7) and sorbitol-positive (putative non-pathogenic E. coli) organisms followed a model that assumed there was a heat-sensitive fraction and a heat-resistant fraction. Inactivation rates of the heat-sensitive fractions were similar for both colony types at each temperature, suggesting that wild-type E. coli can be used as an indicator of inactivation of serotype O157:H7. The decimal reduction time for the heat-sensitive fractions was in the order of 10min at 55 degrees C and ranged from approximately 1-3h at 50 degrees C. Concentrations of heat-resistant organisms at 55 degrees C were 1.4-1.7log(10)cfu/mL. Confirmatory analyses conducted on 30 randomly selected colonies of heat-resistant sorbitol-negative cells from treatment at 55 degrees C indicated that none were serotype O157:H7, nor were they E. coli. Similar analyses on 10 sorbitol-negative isolates from untreated manure indicated that none were serotype O157:H7, although 16S rRNA gene sequence analysis indicated that eight were E. coli or closely related enteric bacteria. These findings suggest that plating on differential-selective media to quantify E. coli, including serotype O157:H7, in effluent samples from thermophilic anaerobic digestion can lead to false positive results. Therefore, more specific methods should be used to evaluate the extent of thermal inactivation of both pathogenic and non-pathogenic E. coli in manure treatment systems.


Assuntos
Reatores Biológicos , Escherichia coli O157/isolamento & purificação , Esterco/microbiologia , Anaerobiose , Animais , Bovinos , Desinfecção , Escherichia coli O157/genética , Temperatura Alta , Filogenia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de DNA
2.
Water Environ Res ; 77(7): 3028-36, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16381150

RESUMO

Thermophilic-anaerobic digestion in a single-stage, mixed, continuous-flow reactor is not approved in the United States as a process capable of producing Class A biosolids for land application. This study was designed to evaluate the inactivation of pathogens and indicator organisms in such a reactor followed by batch treatment in a smaller reactor. The combined process was evaluated at 53 degrees C with sludges from three different sources and at 51 and 55 degrees C with sludge from one of the sources. Feed sludge to the continuous-flow reactor was spiked with the pathogen surrogates Ascaris suum and vaccine-strain poliovirus. Feed and effluent were analyzed for these organisms and for indigenous Salmonella spp., fecal coliforms, Clostridium perfringens spores, and somatic and male-specific coliphages. No viable Ascaris eggs were observed in the effluent from the continuous reactor at 53 or 55 degrees C, with greater than 2-log removals across the digester in all cases. Approximately 2-log removal was observed at 51 degrees C, but all samples of effluent biosolids contained at least one viable Ascaris egg at 51 degrees C. No viable poliovirus was found in the digester effluent at any of the operating conditions, and viable Salmonella spp. were measured in the digester effluent in only one sample throughout the study. The ability of the continuous reactor to remove fecal coliforms to below the Class A monitoring limit depended on the concentration in the feed sludge. There was no significant removal of Clostridium perfringens across the continuous reactor under any condition, and there also was limited removal of somatic coliphages. The removal of male-specific coliphages across the continuous reactor appeared to be related to temperature. Overall, at least one of the Class A pathogen criteria or the fecal coliform limit was exceeded in at least one sample in the continuous-reactor effluent at each temperature. Over the range of temperatures evaluated, the maximum time required to meet the Class A criteria by batch treatment of the continuous-reactor effluent was 1 hour for Ascaris suum and Salmonella spp. and 2 hours for fecal coliforms.


Assuntos
Anaerobiose , Reatores Biológicos , Microbiologia
3.
Environ Sci Technol ; 39(15): 5804-9, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16124318

RESUMO

There is considerable interest in the United States in production of Class A (low pathogen content) biosolids from the treatment of municipal wastewater sludge. Current requirements imposed by the U.S. Environmental Protection Agency make it difficult for thermophilic anaerobic digestion, in its simplest process configurations, to achieve Class A status. In particular, the time-temperature requirements necessitate long batch treatment times at temperatures associated with thermophilic anaerobic digestion. The time-temperature requirements are meant to ensure extensive inactivation of helminth eggs and enteric viruses, considered to be the most heat-resistant of the relevant pathogen classes. However, data on inactivation kinetics of these pathogens at precisely controlled and well-characterized temperatures are scarce. We measured inactivation of vaccine-strain poliovirus and eggs from the helminth Ascaris suum at temperatures from 49 to 55 degrees C in a lab-scale batch reactor containing biosolids from a continuous-flow thermophilic anaerobic digester. Both microbes were inactivated rapidly, with Ascaris more resistant to inactivation than poliovirus, and the relationships between inactivation rate and temperature were steep. The Arrhenius correlation between inactivation rate and temperature over the range 49-53 degrees C is consistent with protein denaturation as the inactivation mechanism for both microbes. The least stringent of the EPA time-temperature equations for thermal processes requires batch treatment times more than 2 orders of magnitude greater than would be required for three-log reduction of Ascaris at the rates we measured, suggesting an overly conservative regulatory approach. Such a grossly conservative approach can hinder full-scale implementation of thermophilic anaerobic digestion.


Assuntos
Ascaris suum/isolamento & purificação , Temperatura Alta , Poliovirus/isolamento & purificação , Eliminação de Resíduos/métodos , Esgotos , Anaerobiose , Animais , Modelos Biológicos , Eliminação de Resíduos/instrumentação , Esgotos/parasitologia , Esgotos/virologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA