Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37894683

RESUMO

Glucosinolates (GSLs) in different plant parts of broccoli (Brassica oleracea var. italic) and rocket (Eruca vesicaria) were analyzed qualitatively and quantitatively before and after treatment with sodium selenate (2 and 5 mM), by their desulfo-counterparts using the UHPLC-DAD-MS/MS technique. Twelve GSLs were detected in broccoli (five aliphatic, one arylaliphatic, and six indolic), where 4-(methylsulfanyl)butyl GSL (glucoerucin) was the main one in the roots (4.88-9.89 µmol/g DW), 4-(methylsulfinyl)butyl GSL (glucoraphanin) in stems (0.44-1.11 µmol/g DW), and 4-hydroxyindol-3-ylmethyl GSL (4-hydroxyglucobrassicin) in leaves (0.51-0.60 µmol/g DW). No GSL containing selenium was detected in the treated broccoli. Ten GSLs were detected in rocket (seven aliphatic and three indolic), where 4-(methylsulfanyl)butyl GSL (glucoerucin) was the main one in the roots (4.50-20.59 µmol/g DW) and 4-methoxyindol-3-ylmethyl GSL (4-methoxyglucobrassicin) in the aerial part (0.57-5.69 µmol/g DW). As a result of induced stress by selenium fertilization, the total GSL content generally increased in both plants. In contrast to broccoli, the roots and the aerial part of the rocket treated with a high concentration of sodium selenate contained 4-(methylseleno)butyl GSL (glucoselenoerucin) (0.36-4.48 µmol/g DW). Although methionine-derived GSLs are the most abundant in both plants, the plants' ability to tolerate selenate and its regulation by selenoglucosinolate production is species- and growth-stage-dependent.


Assuntos
Brassica , Selênio , Ácido Selênico , Glucosinolatos , Espectrometria de Massas em Tandem , Biofortificação
2.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838645

RESUMO

Glucosinolates (GSLs) in Brassica oleracea L. convar. acephala var. viridis (collard) flower, leaf, stem, and root were analyzed qualitatively and quantitatively via their desulfo-counterparts using UHPLC-DAD-MS/MS. Twelve GSLs were identified, including Met-derived GSLs (sinigrin, glucoibervirin, glucoerucin, glucoiberin, glucoraphanin, progoitrin), Trp-derived GSLs (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin), and Phe-derived GSLs (glucotropaeolin and gluconasturtiin). Total GSL content was highest in the root, having 63.40 µmol/g dried weight (DW), with gluconasturtiin (34.02 µmol/g DW) as the major GSL, followed by sinigrin and glucoibervirin (12.43 and 7.65 µmol/g DW, respectively). Total GSL contents in the flower, leaf, and stem were lower than in root, having 6.27, 2.64, and 1.84 µmol/g DW, respectively, with Trp and/or Met-derived GSLs as the predominant ones. GSL breakdown products were obtained via microwave hydrodiffusion and gravity (MHG) and volatile breakdown products were analyzed using GC-MS techniques. Volatile isolates were tested for their cytotoxic activity using MTT assay. MHG volatile extract from the root demonstrated the best cytotoxic activity against human bladder cancer cell line T24 and breast cancer cell line MDA-MB-231 during an incubation time of 72 h (IC50 21.58, and 11.62 µg/mL, respectively). The activity of the root extract can be attributed to its major volatile, 2-phenylethyl isothiocyanate (gluconasturtiin breakdown product).


Assuntos
Brassica , Humanos , Brassica/metabolismo , Glucosinolatos/metabolismo , Espectrometria de Massas em Tandem , Micro-Ondas , Extratos Vegetais/metabolismo
3.
Molecules ; 28(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36838744

RESUMO

Glucosinolates (GSLs) are a unique class of thioglucosides that evolved as defense mechanisms in the 16 families of the Brassicales order and present molecular tags which can be placed in a robust phylogenetic framework through investigations into their evolution and diversity. The GSL profiles of three Resedaceae species, Reseda alba, R. lutea, and R. phyteuma, were examined qualitatively and quantitatively with respect to their desulfo-counterparts utilizing UHPLC-DAD-MS/MS. In addition, NMR analysis of isolated 2-hydroxy-2-methylpropyl desulfoGSL (d31) was performed. Three Phe-derived GSLs were found in R. lutea, including glucotropaeolin (11) (0.6-106.69 mol g-1 DW), 2-(α-L-ramnopyranosyloxy)benzyl GSL (109) (8.10-57.89 µmol g-1 DW), glucolepigramin (22) (8.66 µmol g-1 DW in flower), and Trp-derived glucobrassicin (43) (0.76-5.92 µmol g-1 DW). The Phe-derived GSLs 109 (50.79-164.37 µmol g-1 DW), gluconasturtiin (105) (1.97 µmol g-1 DW), and 11 (tr), as well as the Trp-derived GSL glucobrassicin (43) (3.13-11.26 µmol g-1 DW), were all present in R. phyteuma. R. alba also contained Phe-derived 105 (0.10-107.77 µmol g-1 DW), followed by Trp-derived 43 (0.85-3.50 µmol g-1 DW) and neoglucobrassicin (47) (0.23-2.74 µmol g-1 DW). However, regarding the GSLs in R. alba, which originated from Leu biosynthesis, 31 was the major GSL (6.48 to 52.72 µmol g-1 DW) and isobutyl GSL (62) was the minor GSL (0.13 to 1.13 µmol g-1 DW). The discovered Reseda profiles, along with new evidence provided by GSL characterizations, were studied in the context of the current knowledge on GLSs in the Resedaceae family. With the exception of R. alba, the aliphatic GSLs of which were outliers among the Resedaceae species studied, this family typically contains GSLs derived primarily from Trp and Phe biosynthesis, which modifications resulted in GSLs unique to this family, implying presence of the specific genes. responsible for this diversification.


Assuntos
Glucosinolatos , Resedaceae , Glucosinolatos/química , Croácia , Filogenia , Espectrometria de Massas em Tandem
4.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500524

RESUMO

Glucosinolates (GSLs) from Sysimbrium officinale and S. orientale were analyzed qualitatively and quantitatively by their desulfo-counterparts using UHPLC-DAD-MS/MS. Eight GSLs were identified in S. officinale, including Val-derived (glucoputranjivin) and Trp-derived (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin) as the major ones followed by Leu-derived (Isobutyl GSL), Ile-derived (glucocochlearin) and Phe/Tyr-derived (glucosinalbin). Different S. orientale plant parts contained six GSLs, with Met-derived (progoitrin, epiprogoitrin, and gluconapin) and homoPhe-derived (gluconasturtiin) as the major ones, followed by glucosinalbin and neoglucobrassicin. GSL breakdown products obtained by hydrodistillation (HD) and microwave-assisted distillation from S. officinale, as well as isopropyl isothiocyanate, as the major volatile in both isolates, were tested for their cytotoxic activity using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Generally, all volatile isolates showed similar activity toward the three cancer cell lines. The best activity was shown by isopropyl isothiocyanate at a concentration of 100 µg/mL after 72 h of incubation, with 53.18% for MDA-MB-231, 56.61% for A549, and 60.02% for the T24 cell line.


Assuntos
Brassicaceae , Espectrometria de Massas em Tandem , Glucosinolatos/farmacologia , Glucosinolatos/metabolismo , Isotiocianatos , Brassicaceae/metabolismo
6.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163976

RESUMO

The effects of copper addition, from various adsorbents, on the accumulation ability and glucosinolate content of cultivated rocket were studied. Different adsorbents (zeolite NaX, egg shells, substrate, fly ash) were treated with copper(II) solution with an adsorption efficiency of 98.36, 96.67, 51.82 and 39.13%, respectively. The lowest copper content and the highest total glucosinolate content (44.37 µg/g DW and 4269.31 µg/g DW, respectively) were detected in the rocket grown in the substrate with the addition of a substrate spiked with copper(II) ions. Rocket grown in the fly ash-substrate mixture showed an increase in copper content (84.98 µg/g DW) and the lowest total glucosinolate content (2545.71 µg/g DW). On the other hand, when using the egg shells-substrate mixture, the rocket copper content increased (113.34 µg/g DW) along with the total GSLs content (3780.03 µg/g DW), indicating the influence of an adsorbent type in addition to the copper uptake. The highest copper content of 498.56 µg/g DW was detected in the rocket watered with copper(II) solution with a notable decrease in the glucosinolate content, i.e., 2699.29 µg/g DW. According to these results rocket can be considered as a copper accumulator plant.


Assuntos
Brassicaceae/metabolismo , Cobre/metabolismo , Recuperação e Remediação Ambiental/métodos , Biodegradação Ambiental/efeitos dos fármacos , Brassicaceae/química , Brassicaceae/efeitos dos fármacos , Cobre/análise , Cobre/farmacologia , Glucosinolatos/análise , Folhas de Planta/química
7.
Appl Microbiol Biotechnol ; 106(2): 619-633, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34985568

RESUMO

The study has proved the stimulating effects of different strategies of treatments with elicitors on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in watercress (Nasturtium officinale) microshoot cultures. The study also assessed antioxidant and anti-melanin activities. The following elicitors were tested: ethephon (ETH), methyl jasmonate (MeJA), sodium salicylate (NaSA), and yeast extract (YeE) and were added on day 10 of the growth period. Cultures not treated with the elicitor were used as control. The total GSL content estimations and UHPLC-DAD-MS/MS analyses showed that elicitation influenced the qualitative and quantitative profiles of GSLs. MeJA stimulated the production of gluconasturtiin (68.34 mg/100 g dried weight (DW)) and glucobrassicin (65.95 mg/100 g DW). The elicitation also increased flavonoid accumulation (max. 1131.33 mg/100 g DW, for 100 µM NaSA, collection after 24 h). The elicitors did not boost the total polyphenol content. NaSA at 100 µM increased the production of total chlorophyll a and b (5.7 times after 24 h of treatment), and 50 µM NaSA caused a 6.5 times higher production of carotenoids after 8 days of treatment. The antioxidant potential (assessed with the CUPRAC FRAP and DPPH assays) increased most after 24 h of treatment with 100 µM MeJA. The assessment of anti-melanin activities showed that the microshoot extracts were able to cause inhibition of tyrosinase (max. 27.84% for 1250 µg/mL). KEY POINTS: • Elicitation stimulated of the metabolite production in N. officinale microshoots. • High production of pro-health glucosinolates and polyphenols was obtained. • N. officinale microshoots have got tyrosinase inhibition potential. • The antioxidant potential of N. officinale microshoots was evaluated.


Assuntos
Nasturtium , Antioxidantes , Clorofila A , Monofenol Mono-Oxigenase , Espectrometria de Massas em Tandem
8.
Food Technol Biotechnol ; 60(4): 533-542, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36816870

RESUMO

Research background: Plant Tropaeolum majus L. (garden nasturtium) belongs to the family Tropaeolaceae and contains benzyl glucosinolate. The breakdown product of benzyl glucosinolate, benzyl isothiocyanate (BITC), exhibits various biological activities such as antiproliferative, antibacterial and antiinflammatory. In order to optimize the content of biologically active volatile compounds in plant extract and essential oil, the use of appropriate extraction technique has a crucial role. Experimental approach: The current study investigates the effect of two modern extraction methods, microwave-assisted distillation (MAD) and microwave hydrodiffusion and gravity (MHG), on the chemical composition of volatile components present in the essential oil and extract of garden nasturtium (T. majus L. var. altum) seeds. Investigation of the biological activity of samples (essential oil, extract and pure compounds) was focused on the antiproliferative effect against different cancer cell lines: cervical cancer cell line (HeLa), human colon cancer cell line (HCT116) and human osteosarcoma cell line (U2OS), and the antibacterial activity which was evaluated against the growth and adhesion of Staphylococcus aureus and Escherichia coli to polystyrene surface. Results and conclusions: Essential oil and extract of garden nasturtium (T. majus) seeds were isolated by two extraction techniques: MAD and MHG. BITC and benzyl cyanide (BCN) present in the extract were identified by gas chromatography-mass spectrometry. Essential oil of T. majus showed higher antiproliferative activity (IC50<5 µg/mL) than T. majus extract (IC50<27 µg/mL) against three cancer cell lines: HeLa, HCT116 and U2OS. BITC showed much higher inhibitory effect on all tested cells than BCN. The essential oil and extract of T. majus showed strong antimicrobial activity against S. aureus and E. coli. Novelty and scientific contribution: This work represents the first comparative report on the antiproliferative activity of the essential oil and extract of T. majus seeds, BITC and BCN against HeLa, HCT116 and U2OS cells as well as their antimicrobial activity against S. aureus and E. coli. This study demonstrates that the essential oil of T. majus seeds exhibits stronger antiproliferative and antimicrobial activity than the plant extract.

9.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500622

RESUMO

Glucosinolates (GSLs) from Lepidium graminifolium L. were analyzed qualitatively and quantitatively by their desulfo-counterparts using UHPLC-DAD-MS/MS technique and by their volatile breakdown products-isothiocyanates (ITCs) using GC-MS analysis. Thirteen GSLs were identified with arylaliphatic as the major ones in the following order: 3-hydroxybenzyl GSL (glucolepigramin, 7), benzyl GSL (glucotropaeolin, 9), 3,4,5-trimethoxybenzyl GSL (11), 3-methoxybenzyl GSL (glucolimnanthin, 12), 4-hydroxy-3,5-dimethoxybenzyl GSL (3,5-dimethoxysinalbin, 8), 4-hydroxybenzyl GSL (glucosinalbin, 6), 3,4-dimethoxybenzyl GSL (10) and 2-phenylethyl GSL (gluconasturtiin, 13). GSL breakdown products obtained by hydrodistillation (HD) and CH2Cl2 extraction after hydrolysis by myrosinase for 24 h (EXT) as well as benzyl ITC were tested for their cytotoxic activity using MTT assay. Generally, EXT showed noticeable antiproliferative activity against human bladder cancer cell line UM-UC-3 and human glioblastoma cell line LN229, and can be considered as moderately active, while IC50 of benzyl ITC was 12.3 µg/mL, which can be considered as highly active.


Assuntos
Proliferação de Células/efeitos dos fármacos , Glucosinolatos/química , Glucosinolatos/farmacologia , Lepidium/química , Linhagem Celular Tumoral , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glioblastoma/tratamento farmacológico , Humanos , Hidrólise , Isotiocianatos/química , Isotiocianatos/farmacologia , Espectrometria de Massas em Tandem/métodos , Tiocianatos/química , Tiocianatos/farmacologia , Tioglucosídeos/química , Tioglucosídeos/farmacologia , Neoplasias da Bexiga Urinária/tratamento farmacológico
10.
Molecules ; 26(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361814

RESUMO

The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250-500 µg/mL, 20-21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 µg/mL).


Assuntos
Antioxidantes/química , Nasturtium/química , Extratos Vegetais/química , Brotos de Planta/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Biomassa , Reatores Biológicos , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Humanos , Nasturtium/metabolismo , Extratos Vegetais/farmacologia , Brotos de Planta/crescimento & desenvolvimento , Schisandra/química , Espectrometria de Massas em Tandem
11.
Nat Prod Res ; 35(3): 494-498, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31242759

RESUMO

The glucosinolate (GSL) profiles (inflorescence, stem, root, and fruit) of the wild-growing plant Lepidium graminifolium L. (Brassicaceae) from Croatia was established by LC-MS analysis. During this investigation, we confirmed the presence of benzyl- (1), 3-methoxybenzyl- (2), 4-hydroxybenzyl- (4), 4-methoxyindol-3-ylmethyl- (7) GSLs and reported for the first time in the plant the presence of (2 R)-hydroxybut-3-enyl- (11), (2S)-hydroxybut-3-enyl- (12), but-3-enyl- (13), and 2-phenylethyl- (14) GSLs. Finally, 3-hydroxybenzyl GSL (3) was isolated for the first time from L. graminifolium inflorescence and characterised by spectroscopic data interpretation.


Assuntos
Glucosinolatos/química , Lepidium/química , Cromatografia Líquida de Alta Pressão , Croácia , Frutas/química , Glucosinolatos/isolamento & purificação , Inflorescência/química , Raízes de Plantas/química , Caules de Planta/química , Espectrometria de Massas por Ionização por Electrospray
12.
Molecules ; 25(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187324

RESUMO

The main compounds in both extracts were gluconasturtiin, 4-methoxyglucobrassicin and rutoside, the amounts of which were, respectively, determined as 182.93, 58.86 and 23.24 mg/100 g dry weight (DW) in biomass extracts and 640.94, 23.47 and 7.20 mg/100 g DW in plant herb extracts. The antioxidant potential of all the studied extracts evaluated using CUPRAC (CUPric Reducing Antioxidant Activity), FRAP (Ferric Reducing Ability of Plasma), and DPPH (1,1-diphenyl-2-picrylhydrazyl) assays was comparable. The anti-inflammatory activity of the extracts was tested based on the inhibition of 15-lipoxygenase, cyclooxygenase-1, cyclooxygenase-2 (COX-2), and phospholipase A2. The results demonstrate significantly higher inhibition of COX-2 for in vitro cultured biomass compared with the herb extracts (75.4 and 41.1%, respectively). Moreover, all the studied extracts showed almost similar antibacterial and antifungal potential. Based on these findings, and due to the fact that the growth of in vitro microshoots is independent of environmental conditions and unaffected by environmental pollution, we propose that biomass that can be rapidly grown in RITA® bioreactors can serve as an alternative source of bioactive compounds with valuable biological properties.


Assuntos
Antioxidantes/farmacologia , Glucosinolatos/química , Nasturtium/química , Extratos Vegetais/química , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antifúngicos/farmacologia , Biomassa , Reatores Biológicos , Compostos de Bifenilo/química , Cromatografia Líquida de Alta Pressão , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Flavonoides/química , Imersão , Nasturtium/crescimento & desenvolvimento , Compostos Fitoquímicos/química , Picratos/química , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento
13.
Biomolecules ; 10(2)2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32098279

RESUMO

Horseradish degradation products, mainly isothiocyanates (ITC) and nitriles, along with their precursors glucosinolates, were characterized by GC-MS and UHPLC-MS/MS, respectively. Volatiles from horseradish leaves and roots were isolated using microwave assisted-distillation (MAD), microwave hydrodiffusion and gravity (MHG) and hydrodistillation (HD). Allyl ITC was predominant in the leaves regardless of the isolation method while MAD, MHG, and HD of the roots resulted in different yields of allyl ITC, 2-phenylethyl ITC, and their nitriles. The antimicrobial potential of roots volatiles and their main compounds was assessed against sixteen emerging food spoilage and opportunistic pathogens. The MHG isolate was the most active, inhibiting bacteria at minimal inhibitory concentrations (MICs) from only 3.75 to 30 µg/mL, and fungi at MIC50 between <0.12 and 0.47 µg/mL. Cytotoxic activity of volatile isolates and their main compounds were tested against two human cancer cell lines using MTT assay after 72 h. The roots volatiles showed best cytotoxic activity (HD; IC50 = 2.62 µg/mL) against human lung A549 and human bladder T24 cancer cell lines (HD; IC50 = 0.57 µg/mL). Generally, 2-phenylethyl ITC, which was tested for its antimicrobial and cytotoxic activities along with two other major components allyl ITC and 3-phenylpropanenitrile, showed the best biological activities.


Assuntos
Armoracia/metabolismo , Glucosinolatos/metabolismo , Glucosinolatos/farmacologia , Animais , Anti-Infecciosos/farmacologia , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucosinolatos/isolamento & purificação , Humanos , Isotiocianatos/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Folhas de Planta/química , Raízes de Plantas/química , Espectrometria de Massas em Tandem/métodos
14.
Biomolecules ; 10(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32024150

RESUMO

Glucosinolates (GSLs) from Lunaria annua L. seeds were analyzed qualitatively and quantitatively by their desulfo counterparts using UHPLC-DAD-MS/MS technique and by their volatile breakdown products, isothiocyanates (ITCs), using GC-MS technique. GSL breakdown products were obtained by conventional techniques (hydrodistillation in a Clevenger type apparatus (HD), CH2Cl2 extraction after myrosinase hydrolysis (EXT) for 24 h) as well as by modern techniques, microwave-assisted distillation (MAD) and microwave hydrodiffusion and gravity (MHG). Seven GSLs were identified as follows: isopropyl GSL (1), sec-butyl GSL (2), 5-(methylsulfinyl)pentyl GSL (3), 6-(methylsulfinyl)hexyl GSL (4), 5-(methylsulfanyl)pentyl GSL (5), 6-(methylsulfanyl)hexyl GSL (6), and benzyl GSL (7). Additionally, pent-4-enyl- and hex-5-enyl ITCs were detected in the volatile extracts. However, their corresponding GSLs were not detected using UHPLC-DAD-MS/MS. Thus, they are suggested to be formed during GC-MS analysis via thermolysis of 5-(methylsulfinyl)pentyl- and 6-(methylsulfinyl)hexyl ITCs, respectively. Volatile isolates were tested for their cytotoxic activity using MTT assay. EXT and MHG showed the best cytotoxic activity against human lung cancer cell line A549 during an incubation time of 72 h (IC50 18.8, and 33.5 µg/mL, respectively), and against breast cancer cell line MDA-MB-231 after 48 h (IC50 6.0 and 11.8 µg/mL, respectively). These activities can be attributed to the ITCs originating from 3 and 4.


Assuntos
Glucosinolatos/análise , Glucosinolatos/isolamento & purificação , Isotiocianatos/química , Lamiales/química , Micro-Ondas , Células A549 , Linhagem Celular Tumoral , Sobrevivência Celular , Difusão , Cromatografia Gasosa-Espectrometria de Massas , Glicosídeo Hidrolases/metabolismo , Humanos , Hidrólise , Concentração Inibidora 50 , Extratos Vegetais/análise , Sementes/metabolismo , Espectrometria de Massas em Tandem , Fatores de Tempo
15.
Carbohydr Res ; 488: 107898, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31918339

RESUMO

The glucosinolate (GSL) profiles of wild-growing plants from the genus Hesperis, i.e. Hesperis laciniata All. (leaf, stem, flower, and root) from Croatia and Hesperis matronalis L. (leaf, stem, flower, seed, and root) from Canada, were established by LC-MS. During this investigation, 5-(methylsulfanyl)pentyl- (3), 6-(methylsulfanyl)hexyl- (4), 6-(methylsulfinyl)hexyl- (6), and 4'-α-l-rhamnopyranosyloxybenzyl- (17) GSLs were identified. In addition, the presence of 7-(methylsulfinyl)heptyl GSL (18), hydroxy-(α-l-rhamnopyranosyloxy)benzyl GSL, and of one d-apiosylated analogue of 17 were suggested. Moreover, one new GSL, 4'-O-ß-d-apiofuranosylglucomatronalin (19) was isolated from H. laciniata (flower, steam and leaf) and characterized by spectroscopic data interpretation. Finally, we report the presence of 3, 4, 6, 19, glucosinalbin (12), and 4-hydroxyglucobrassicin (20) in H. matronalis and hypothesize the presence of glucomatronalin (13) and 3-hydroxy-6-(methylsulfanyl)hexyl GSL (21).


Assuntos
Brassicaceae/química , Glucosinolatos/análise , Extratos Vegetais/análise , Canadá , Cromatografia Líquida , Croácia , Glucosinolatos/química , Espectrometria de Massas , Estrutura Molecular , Extratos Vegetais/química , Folhas de Planta/química , Raízes de Plantas/química , Sementes/química
16.
Curr Med Chem ; 27(26): 4297-4343, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-29600750

RESUMO

Essential oils constituents are a diverse family of low molecular weight organic compounds with comprehensive biological activity. According to their chemical structure, these active compounds can be divided into four major groups: terpenes, terpenoids, phenylpropenes, and "others". In addition, they may contain diverse functional groups according to which they can be classified as hydrocarbons (monoterpenes, sesquiterpenes, and aliphatic hydrocarbons); oxygenated compounds (monoterpene and sesquiterpene alcohols, aldehydes, ketones, esters, and other oxygenated compounds); and sulfur and/or nitrogen containing compounds (thioesters, sulfides, isothiocyanates, nitriles, and others). Compounds that act as cholinesterase inhibitors still represent the only pharmacological treatment of Alzheimer´s disease. Numerous in vitro studies showed that some compounds, found in essential oils, have a promising cholinesterase inhibitory activity, such as α-pinene, δ-3-carene, 1,8-cineole, carvacrol, thymohydroquinone, α- and ß-asarone, anethole, etc. This review summarizes the most relevant research published to date on essential oil constituents and their acetylcholinesterase/butyrylcholinesterase inhibitory potential as well as their structure related activity, synergistic and antagonistic effects.


Assuntos
Inibidores da Colinesterase/farmacologia , Acetilcolinesterase , Óleos Voláteis , Enxofre , Terpenos
17.
Phytochemistry ; 169: 112100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31771793

RESUMO

The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-ß-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.


Assuntos
Glucosinolatos , Plantas/metabolismo , Glucosinolatos/síntese química , Glucosinolatos/química , Glucosinolatos/metabolismo , Estrutura Molecular , Plantas/química
18.
Molecules ; 24(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791395

RESUMO

Bunias erucago belongs to the Brassicaceae family, which represents a forgotten crop of the Euro-Mediterranean area. The aim of the present study was to determine the glucosinolate profile in different plant parts and biological properties (antioxidant, anticholinesterase, and cytotoxic activities) of the isolates containing glucosinolate breakdown products. The chemical profiles were determined by using HPLC-PDA-MS/MS of desulfoglucosinolates and GC-MS of glucosinolate degradation products. The analysis of B. erucago showed the presence of seven glucosinolates: gluconapin (1), glucoraphasatin (2), glucoraphenin (3), glucoerucin (4), glucoraphanin (5), glucotropaeolin (6), and glucosinalbin (7). The total glucosinolate content ranged from 7.0 to 14.6 µmol/g of dry weight, with the major glucosinolate glucosinalbin in all parts. The antioxidant activity of all volatile isolates was not notable. At a tested concentration of 227 µg/mL, flower hydro-distillate (FH) showed good AChE inhibition, i.e., 40.9%, while root hydro-distillate (RH) had good activity against BChE, i.e., 54.3%. FH showed the best activity against both tested human bladder cancer cell lines, i.e., against T24 after 72 h, which have IC50 of 16.0 µg/mL, and against TCCSUP after 48 h with IC50 of 7.8 µg/mL, and can be considered as highly active. On the other hand, RH showed weak activity against tested cancer cells.


Assuntos
Brassicaceae/química , Glucosinolatos/química , Glucosinolatos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antagonistas Colinérgicos/química , Antagonistas Colinérgicos/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Compostos Orgânicos Voláteis/química
19.
Chem Biodivers ; 16(4): e1800661, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30714673

RESUMO

The cultivated Lepidium latifolium L. was investigated to decipher its glucosinolate profile, antimicrobial, and cytotoxic activities. HPLC/ESI-MS analyses of the intact glucosinolates and GC/MS analysis of their hydrolysis products showed the presence of sinigrin (1), glucocochlearin (2), glucotropaeolin (3), and 4-methoxyglucobrassicin (4). Hydrodistillate, extract, and allyl isothiocyanate, the main volatile resulting from sinigrin degradation, showed antimicrobial activity against all eleven tested pathogenic and food spoilage bacteria and fungi, with highest effect observed against Candida albicans with MIC50 8 and 16 µg/mL. Hydrodistillate and extract showed the best cytotoxic activity on bladder cancer UM-UC-3 cell line during an incubation time of 24 h (IC50 192.9 and 133.8 µg/mL, respectively), while the best effect on glioblastoma LN229 cell line was observed after 48 h (IC50 110.8 and 30.9 µg/mL, respectively). Pure allyl isothiocyanate displayed a similar trend in cytotoxic effect on both cell lines (IC50 23.3 and 36.5 µg/mL after 24 h and 48 h, respectively).


Assuntos
Antifúngicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Candida albicans/efeitos dos fármacos , Isotiocianatos/farmacologia , Lepidium/química , Extratos Vegetais/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isotiocianatos/química , Isotiocianatos/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
20.
J Enzyme Inhib Med Chem ; 33(1): 577-582, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29513045

RESUMO

Finding a new type of cholinesterase inhibitor that would overcome the brain availability and pharmacokinetic parameters or hepatotoxic liability has been a focus of investigations dealing with the treatment of Alzheimer's disease. Isothiocyanates have not been previously investigated as potential cholinesterase inhibitors. These compounds can be naturally produced from their glucosinolate precursors, secondary metabolites widely distributed in our daily Brassica vegetables. Among 11 tested compounds, phenyl isothiocyanate and its derivatives showed the most promising inhibitory activity. 2-Methoxyphenyl ITC showed best inhibition on acetylcholinesterase with IC50 of 0.57 mM, while 3-methoxyphenyl ITC showed the best inhibition on butyrylcholinesterase having 49.2% at 1.14 mM. Assessment of the antioxidant efficacy using different methods led to a similar conclusion. The anti-inflammatory activity was also tested using human COX-2 enzyme, ranking phenyl isothiocyanate, and 3-methoxyphenyl isothiocyanate as most active, with ∼99% inhibition at 50 µM.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Isotiocianatos/farmacologia , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Antioxidantes/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Relação Dose-Resposta a Droga , Electrophorus , Cavalos , Humanos , Isotiocianatos/química , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA