Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 619(7969): 248-251, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37430110
2.
Waste Manag Res ; 41(4): 860-870, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36412577

RESUMO

Waste generation and disposal have been a global issue for decades. The total global greenhouse gas (GHG) emissions in 2019 were 49,758 MtCO2e with waste disposal accounting for 3.2%. With rapid urbanization trends, municipal solid waste (MSW) has become a global challenge which needs to be addressed. A large fraction of MSW such as food wastes, e-waste among others still ends up with unregulated dumps or openly burned in low-income countries. As a response, China initiated the 'zero-waste' pilot program which has been running since 2019. To investigate the potential contribution of MSW management to GHG reductions, this study selected four 'zero-waste' cities in China, namely Shenzhen, Panjin, Xining and Tongling, as case studies to assess the impacts of different MSW management policies on GHG reductions from 2015 to 2019. Results demonstrated that Shenzhen city achieved progress in reducing GHGs, which decreased by more than 40% between 2015 and 2019. This study provides policy recommendations and waste management approaches and practices to optimize MSW management and reduction of GHGs.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Gerenciamento de Resíduos , Efeito Estufa , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Cidades , China
3.
Sustain Cities Soc ; : 102358, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32837870

RESUMO

In today's world, urban systems play an important role in sustainable economic development. In particular, urbanisation trends and the increasing demands of urban mobility place additional pressure on existing transportation infrastructure, and this creates new challenges for urban planners in terms of developing integrated and sustainable urban mobility policies. Here, we take a novel and holistic approach to analysing transformative pathways towards sustainable urban mobility, considering the complex dynamics in metropolitan regions. To achieve this, we develop a toolset to assess the impact of potential measures to be taken by decision makers. Our innovative approach is based on the introduction of a new system framework to link the interrelated sector parameters of mobility systems by considering the effects of innovative mixed methods (both qualitative and quantitative) on scenario development and evaluation on the basis of global trends at the macro scale and their specific influences on the mobility sector at the local scale. To this end, we used a participatory modelling approach to develop scenarios and evaluate them as integrated simulation runs via a comprehensive and holistic system dynamics (SD) model. Thus, we estimated dynamic interdependencies between all of the factors relating to the mobility sector and then assigned business decision-making criteria to the urban systems. Furthermore, we introduced a sustainable net present value framework to estimate the sustainability outcomes of government investment in urban mobility infrastructure. A case study relating to the Rhine-Rhine-Ruhr metropolitan region in Germany was applied in order to simulate four scenarios co-created with stakeholders involved in our study, namely, Smart City, Sustainable/Healthy City, Deurbanisation and Business-as-Usual (BaU), which served as a solid basis from which to quantify path dependencies in terms of policy implementation. At the same time, recommendations were derived for sustainable mobility transformation within metropolitan regions.

4.
J Environ Manage ; 262: 110330, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250809

RESUMO

The BRICS countries (Brazil, Russia, India, China and South Africa) are central to future global economic development. However, they are facing both environmental and natural resource stresses due to their rapid economic growth. This study examines the balance between economic benefits and cost of environmental emissions and resource usage in BRICS countries so that future sustainable development insights can be provided. The historical trends of carbon dioxide (CO2), sulfur dioxide (SO2), water, land, energy and material footprints of these countries from 1995 to 2015 are evaluated with a multi-regional input-output model. Also, whether a decoupling relationship exists between economic development, environmental emissions and resources consumption, is examined. In addition, whether environmental emissions and resource usage costs to obtain identical economic gains of these countries in global trade are explored. The major results show that in congruence with economic development, the average annual growth rates of footprint indicators ranged from 0.2% in 1995 to 9.8% in 2015. A decoupling effect did not occur for CO2 emissions or water consumption but did exist for other indicators. Global trade across the supply chain shows to achieve a unit of USD economic benefit from trade, BRICS countries tend to use relatively greater environmental emissions and resource consumption to high income countries, when compared to other income level countries. These emergent economies did receive relatively greater benefits per environmental emissions and resource usage cost from lower-middle and low-income countries.


Assuntos
Dióxido de Carbono , Desenvolvimento Econômico , Brasil , China , Índia , Federação Russa , África do Sul
5.
Environ Sci Technol ; 53(10): 5877-5886, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31013057

RESUMO

China proposed the Belt and Road Initiative (BRI), an unprecedented development strategy in terms of scope and scale, to increase the connectivity with the rest of the world by infrastructure development and trade activities. Recently, more attention has been directed to the environmental implications of the international trade activities under this initiative, which contributes to the development of a green, i.e. environmentally friendly, partnership. This study examines the evolution of virtual water trade in relation to agricultural products between China and BRI countries during 2000-2016. The Logarithmic Mean Divisia Index (LMDI) method is adopted for uncovering the driving factors underlying the trade imbalance, as well as the major virtual water exports. Results reveal that China has experienced the shift from a net virtual water exporter to a net importer. At the regional level, Southeastern Asia and Southern Asia are the major net virtual water exporters to China, and Eastern Asia is the major importer. For the selected export countries, an increase in proportion of trade in relation to domestic production significantly contributes to their virtual water export, while water intensity could decrease virtual water export for most export countries. As for the driving forces behind the imbalance of virtual water trade, trade structure was an obvious positive effect, while the effects of water intensity, product structure, and trade scale shifted in favor of virtual water outflows from BRI countries to China in 2008. Massive global water loss has incurred, indicating the inefficiency of this partnership in relation to freshwater. A closer trade relationship is established between China and BRI countries, and relevant environment implications are identified. Policy implications are proposed in terms of trade structure, relationship of trade and domestic production, and international cooperation. This study provides valuable insights into the equity and sustainability of historic trade activities with respect to freshwater resources.


Assuntos
Agricultura , Água , Ásia , China , Ásia Oriental
7.
Environ Int ; 121(Pt 1): 178-188, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30216770

RESUMO

Water embodied in traded commodities is important for water sustainability management. This study provides insight into China's water footprint and virtual water trade using three specific water named Green, Blue and Grey. A multi-region input-output analysis at national and sectoral analysis levels from the years 1995 to 2009 is conducted. The evolution and position of China's virtual water trade across a global supply chain are explored through cluster analysis. The results show that China represented 11.2% of the global water footprint in 1995 and 13.6% in 2009. The green virtual water is the largest of China's exports and imports. In general, China is a net exporter of virtual water during this time period. China mainly imports virtual water from the USA, India and Brazil, and mainly exports virtual water to the USA, Japan and Germany. The agriculture sector and the food sector represent the sectors with both the largest import and export virtual water quantities. China's global virtual water trade network has been relatively stable from 1995 to 2009. China has especially close relationships with the USA, Indonesia, India, Canada, Mexico, Brazil and Australia. Trade relations, resource endowment and supply-demand relationships may play key roles in China's global virtual water footprint network rather than geographical location. Finally, policy implications are proposed for China's long term sustainable water management and for global supply chain management in general.


Assuntos
Conservação dos Recursos Hídricos/economia , Abastecimento de Água/economia , China , Comércio , Água
8.
Waste Manag Res ; 29(9): 902-10, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21771872

RESUMO

As illustrated by the case studies of end-of-life vehicles and waste electric and electronic equipment, the approach of an extended producer responsibility is undermined by the exports of used and waste products. This fact causes severe deficits regarding circular flows, especially of critical raw materials such as platinum group metals. With regard to global recycling there seems to be a responsibility gap which leads somehow to open ends of waste flows and a loss or down-cycling of potential secondary resources. Existing product-orientated extended producer responsibility (EPR) approaches with mass-based recycling quotas do not create adequate incentives to supply waste materials containing precious metals to a high-quality recycling and should be amended by aspects of a material stewardship. The paper analyses incentive effects on EPR for the mentioned product groups and metals, resulting from existing regulations in Germany. It develops a proposal for an international covenant on metal recycling as a policy instrument for a governance-oriented framework to initiate systemic innovations along the complete value chain taking into account product group- and resource group-specific aspects on different spatial levels. It aims at the effective implementation of a central idea of EPR, the transition of a waste regime still focusing on safe disposal towards a sustainable management of resources for the complete lifecycle of products.


Assuntos
Conservação dos Recursos Naturais/economia , Política Ambiental/economia , Metais , Reciclagem , Gerenciamento de Resíduos/economia , Gerenciamento de Resíduos/métodos , Automóveis , Telefone Celular , Computadores , Resíduo Eletrônico/classificação , Resíduo Eletrônico/economia , União Europeia , Alemanha , Regulamentação Governamental , Gerenciamento de Resíduos/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA