Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 13(1): 1966278, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34455931

RESUMO

The human gut microbiota plays a central role in intestinal health and disease. Yet, many of its bacterial constituents are functionally still largely unexplored. A crucial prerequisite for bacterial survival and proliferation is the creation and/or exploitation of an own niche. For many bacterial species that are linked to human disease, the inner mucus layer was found to be an important niche. Allobaculum mucolyticum is a newly identified, IBD-associated species that is thought be closely associated with the host epithelium. To explore how this bacterium is able to effectively colonize this niche, we screened its genome for factors that may contribute to mucosal colonization. Up to 60 genes encoding putative Carbohydrate Active Enzymes (CAZymes) were identified in the genome of A. mucolyticum. Mass spectrometry revealed 49 CAZymes of which 26 were significantly enriched in its secretome. Functional assays demonstrated the presence of CAZyme activity in A. mucolyticum conditioned medium, degradation of human mucin O-glycans, and utilization of liberated non-terminal monosaccharides for bacterial growth. The results support a model in which sialidases and fucosidases remove terminal O-glycan sugars enabling subsequent degradation and utilization of carbohydrates for A. mucolyticum growth. A. mucolyticum CAZyme secretion may thus facilitate bacterial colonization and degradation of the mucus layer and may pose an interesting target for future therapeutic intervention.


Assuntos
Firmicutes/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Mucinas/metabolismo , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Firmicutes/classificação , Firmicutes/genética , Microbioma Gastrointestinal/fisiologia , Genoma Bacteriano/genética , Humanos , Intestinos/metabolismo , Intestinos/microbiologia , Neuraminidase/metabolismo , alfa-L-Fucosidase/metabolismo
2.
mBio ; 12(2)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33824202

RESUMO

At the intestinal host-microbe interface, the transmembrane mucin MUC1 can function as a physical barrier as well as a receptor for bacteria. MUC1 also influences epithelial cell morphology and receptor function. Various bacterial pathogens can exploit integrins to infect eukaryotic cells. It is yet unclear whether MUC1 influences the interaction of bacteria with integrins. We used Escherichia coli expressing the invasin (inv) protein of Yersinia pseudotuberculosis (E. coli inv) to assess the effects of MUC1 on ß1 integrin (ITGB1)-mediated bacterial invasion. Our results show that expression of full-length MUC1 does not yield a physical barrier but slightly enhances E. coli inv uptake. Enzymatic removal of the MUC1 extracellular domain (ED) using a secreted protease of C1 esterase inhibitor (StcE) of pathogenic Escherichia coli had no additional effect on E. coli inv invasion. In contrast, expression of a truncated MUC1 that lacks the cytoplasmic tail (CT) reduced bacterial entry substantially. Substitution of tyrosine residues in the MUC1 CT also reduced bacterial uptake, while deletion of the C-terminal half of the cytoplasmic tail only had a minor effect, pointing to a regulatory role of tyrosine phosphorylation and the N-terminal region of the MUC1 CT in integrin-mediated uptake process. Unexpectedly, StcE removal of the ED in MUC1-ΔCT cells reversed the block in bacterial invasion. Together, these findings indicate that MUC1 can facilitate ß1-integrin-mediated bacterial invasion by a concerted action of the large glycosylated extracellular domain and the membrane-juxtaposed cytoplasmic tail region.IMPORTANCE Bacteria can exploit membrane receptor integrins for cellular invasion, either by direct binding of bacterial adhesins or utilizing extracellular matrix components. MUC1 is a large transmembrane glycoprotein expressed by most epithelial cells that can have direct defensive or receptor functions at the host-microbe interface and is involved in facilitating integrin clustering. We investigated the role of epithelial MUC1 on ß1 integrin-mediated bacterial invasion. We discovered that MUC1 does not act as a barrier but facilitates bacterial entry through ß1 integrins. This process involves a concerted action of the MUC1 O-glycosylated extracellular domain and cytoplasmic tail. Our findings add a new dimension to the complexity of bacterial invasion mechanisms and provide novel insights into the distinct functions of MUC1 domains at the host-microbe interface.


Assuntos
Células Epiteliais/microbiologia , Escherichia coli/metabolismo , Integrina beta1/metabolismo , Mucina-1/metabolismo , Yersinia pseudotuberculosis/genética , Adesinas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células HEK293 , Células HeLa , Humanos , Integrina beta1/genética , Mucina-1/genética
3.
PLoS Pathog ; 15(2): e1007566, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716138

RESUMO

The cellular invasion machinery of the enteric pathogen Salmonella consists of a type III secretion system (T3SS) with injectable virulence factors that induce uptake by macropinocytosis. Salmonella invasion at the apical surface of intestinal epithelial cells is inefficient, presumably because of a glycosylated barrier formed by transmembrane mucins that prevents T3SS contact with host cells. We observed that Salmonella is capable of apical invasion of intestinal epithelial cells that express the transmembrane mucin MUC1. Knockout of MUC1 in HT29-MTX cells or removal of MUC1 sialic acids by neuraminidase treatment reduced Salmonella apical invasion but did not affect lateral invasion that is not hampered by a defensive barrier. A Salmonella deletion strain lacking the SiiE giant adhesin was unable to invade intestinal epithelial cells through MUC1. SiiE-positive Salmonella closely associated with the MUC1 layer at the apical surface, but invaded Salmonella were negative for the adhesin. Our findings uncover that the transmembrane mucin MUC1 is required for Salmonella SiiE-mediated entry of enterocytes via the apical route.


Assuntos
Adesinas Bacterianas/metabolismo , Mucina-1/fisiologia , Infecções por Salmonella/metabolismo , Proteínas de Bactérias , Linhagem Celular , Elonguina/metabolismo , Enterócitos , Células Epiteliais , Humanos , Mucina-1/genética , Mucina-1/metabolismo , Salmonella enterica/patogenicidade , Salmonella typhimurium/patogenicidade , Fatores de Virulência
4.
J Immunol ; 193(9): 4548-57, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25267974

RESUMO

The Gram-negative pathogen Campylobacter jejuni is the most common cause of bacterial foodborne disease worldwide. The mechanisms that lead to bacterial invasion of eukaryotic cells and massive intestinal inflammation are still unknown. In this study, we report that C. jejuni infection of mouse macrophages induces upregulation of pro-IL-1ß transcript and secretion of IL-1ß without eliciting cell death. Immunoblotting indicated cleavage of caspase-1 and IL-1ß in infected cells. In bone marrow-derived macrophages from different knockout mice, IL-1ß secretion was found to require NLRP3, ASC, and caspase-1/11 but not NLRC4. In contrast to NLRP3 activation by ATP, C. jejuni activation did not require priming of these macrophages. C. jejuni also activated the NLRP3 inflammasome in human macrophages as indicated by the presence of ASC foci and caspase-1-positive cells. Analysis of a vast array of C. jejuni mutants with defects in capsule formation, LPS biosynthesis, chemotaxis, flagella synthesis and flagellin (-like) secretion, type 6 secretion system needle protein, or cytolethal distending toxin revealed a direct correlation between the number of intracellular bacteria and NLRP3 inflammasome activation. The C. jejuni invasion-related activation of the NLRP3 inflammasome without cytotoxicity and even in nonprimed cells extends the known repertoire of bacterial inflammasome activation and likely contributes to C. jejuni-induced intestinal inflammation.


Assuntos
Campylobacter jejuni/imunologia , Inflamassomos/metabolismo , Animais , Infecções por Campylobacter/genética , Infecções por Campylobacter/imunologia , Infecções por Campylobacter/metabolismo , Campylobacter jejuni/genética , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Células Cultivadas , Humanos , Interleucina-1beta/biossíntese , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR
5.
PLoS Pathog ; 9(5): e1003393, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737749

RESUMO

The pathogen Campylobacter jejuni is the principal cause of bacterial food-borne infections. The mechanism(s) that contribute to bacterial survival and disease are still poorly understood. In other bacterial species, type VI secretion systems (T6SS) are increasingly recognized to contribute to bacterial pathogenesis by toxic effects on host cells or competing bacterial species. Here we report the presence of a functional Type VI secretion system in C. jejuni. Proteome and genetic analyses revealed that C. jejuni strain 108 contains a 17-kb T6SS gene cluster consisting of 13 T6SS-conserved genes, including the T6SS hallmark genes hcp and vgrG. The cluster lacks an ortholog of the ClpV ATPase considered important for T6SS function. The sequence and organization of the C. jejuni T6SS genes resemble those of the T6SS located on the HHGI1 pathogenicity island of Helicobacter hepaticus. The C. jejuni T6SS is integrated into the earlier acquired Campylobacter integrated element CJIE3 and is present in about 10% of C. jejuni isolates including several isolates derived from patients with the rare clinical feature of C. jejuni bacteremia. Targeted mutagenesis of C. jejuni T6SS genes revealed T6SS-dependent secretion of the Hcp needle protein into the culture supernatant. Infection assays provided evidence that the C. jejuni T6SS confers contact-dependent cytotoxicity towards red blood cells but not macrophages. This trait was observed only in a capsule-deficient bacterial phenotype. The unique C. jejuni T6SS phenotype of capsule-sensitive contact-mediated hemolysis represents a novel evolutionary pathway of T6SS in bacteria and expands the repertoire of virulence properties associated with T6SS.


Assuntos
Cápsulas Bacterianas , Proteínas de Bactérias , Sistemas de Secreção Bacterianos/genética , Campylobacter jejuni , Citotoxinas , Polissacarídeos Bacterianos , Animais , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Linhagem Celular , Citotoxinas/genética , Citotoxinas/metabolismo , Eritrócitos/metabolismo , Eritrócitos/microbiologia , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Família Multigênica , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo
6.
PLoS One ; 7(9): e45343, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049787

RESUMO

BACKGROUND: Natural compounds with anti-microbial properties are attractive reagents to reduce the use of conventional antibiotics. Carvacrol, the main constituent of oregano oil, inhibits the growth of a variety of bacterial foodborne pathogens. As concentrations of carvacrol may vary in vivo or when used in animal feed, we here investigated the effect of subinhibitory concentrations of the compound on major virulence traits of the principal bacterial foodborne pathogen Campylobacter jejuni. METHODS/PRINCIPAL FINDINGS: Motility assays revealed that subinhibitory concentrations of carvacrol inhibited the motility of C. jejuni without affecting bacterial growth. Immunoblotting and electron microscopy showed that carvacrol-treated C. jejuni still expressed flagella. The loss of motility was not caused by reduced intracellular ATP levels. In vitro infection assays demonstrated that subinhibitory concentrations of carvacrol also abolished C. jejuni invasion of human epithelial cells. Bacterial uptake of invasive Escherichia coli was not blocked by carvacrol. Exposure of C. jejuni to carvacrol prior to infection also inhibited cellular infection, indicating that the inhibition of invasion was likely caused by an effect on the bacteria rather than inhibition of epithelial cell function. CONCLUSIONS/SIGNIFICANCE: Bacterial motility and invasion of eukaryotic cells are considered key steps in C. jejuni infection. Our results indicate that subinhibitory concentrations of carvacrol effectively block these virulence traits by interfering with flagella function without disturbing intracellular ATP levels. These results broaden the spectrum of anti-microbial activity of carvacrol and support the potential of the compound for use in novel infection prevention strategies.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Campylobacter jejuni/efeitos dos fármacos , Células Epiteliais/microbiologia , Flagelos/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Monoterpenos/farmacologia , Trifosfato de Adenosina/metabolismo , Campylobacter jejuni/fisiologia , Linhagem Celular , Cimenos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Microscopia Eletrônica , Movimento/efeitos dos fármacos , Mutação , Imagem com Lapso de Tempo
7.
Microbiology (Reading) ; 154(Pt 11): 3385-3397, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18957592

RESUMO

Flagellin of Campylobacter jejuni is extensively modified with (derivatives of) pseudaminic acid. The flagellar glycosylation locus contains several genes with homopolymeric G-tracts prone to slipped-strand mispairing, some of which belong to the maf gene family. We investigated the function of the putative phase-variable maf4 gene of C. jejuni strain 108. A constructed maf4 mutant displayed unaltered flagella assembly and bacterial motility. 2D-PAGE analysis revealed that the flagellin of strain 108 migrated at a more acidic pI than the protein of the Maf4 mutant. MS-MS in combination with high-resolution matrix-assisted laser desorption/ionization Fourier transform ion cyclotron MS (MALDI-FT-ICR-MS) on flagellin-derived glycopeptides showed that the flagellins of the mutant lacked two previously unidentified modifications of pseudaminic acid. These glycoforms carried additional CO(2) and C(2)H(2)O(2) groups, consistent with the more acidic pI of the wild-type flagellin. Phenotypically, the maf4 mutant displayed strongly delayed bacterial autoagglutination. Collectively, our results suggest that the presence of a functional Maf4 expands the flagellin glycan repertoire with novel glycoforms of pseudaminic acid and, in the event of phase variation, alters the population behaviour of C. jejuni.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/fisiologia , Flagelina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Campylobacter jejuni/química , Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Linhagem Celular , Flagelos/química , Flagelos/genética , Flagelos/metabolismo , Flagelina/química , Flagelina/genética , Glicosilação , Humanos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
8.
Microbiology (Reading) ; 154(Pt 2): 584-592, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18227262

RESUMO

Bacterial alkaline phosphatases (PhoA) hydrolyse phosphate-containing substrates to provide the preferred phosphorus source inorganic phosphate (P(i)). Campylobacter jejuni does not contain a typical PhoA homologue but contains a phosphatase that is regulated by the two-component system PhosS/PhosR. Here we describe the characterization of the enzyme, its secretion pathway and its function in the bacterium's biology. Phosphatase assays showed that the enzyme utilizes exclusively phosphomonoesters as a substrate, requires Ca(2+) for its activity, and displays maximum activity at a pH of 10. Gene disruption revealed that it is the sole alkaline phosphatase in C. jejuni. The protein contained a twin-arginine motif (RR) at its N terminus, typical of substrates of the Tat secretion system. Substitution of the twin-arginine residues showed that they are essential for enzyme activity. C. jejuni genome analysis indicated the presence of four ubiquitously expressed Tat components that may form a functional Tat secretion system as well as 11 putative Tat substrates, including the alkaline phosphatase (PhoA(Cj)) and the nitrate reductase NapA. Inactivation of tatC caused defects in both PhoA(Cj) and NapA activity as well as a reduction in bacterial growth that were all restored by complementation in trans with an intact tatC copy. The atypical overall features of the PhoA(Cj) compared to Escherichia coli PhoA support the existence in prokaryotes of a separate group of Tat-dependent alkaline phosphatases, classified as the PhoX family.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Fosfatase Alcalina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina , Proteínas de Bactérias/genética , Cálcio/metabolismo , Clonagem Molecular , Sequência Conservada , Ativação Enzimática , Proteínas de Escherichia coli/metabolismo , Teste de Complementação Genética , Concentração de Íons de Hidrogênio , Proteínas de Membrana Transportadoras/genética , Transporte Proteico , Especificidade por Substrato
9.
Cell Microbiol ; 10(1): 53-66, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18052944

RESUMO

The bacterial pathogen Campylobacter jejuni invades mucosal cells via largely undefined and rather inefficient (0.01-2 bacteria per cell) mechanisms. Here we report a novel, highly efficient C. jejuni infection pathway resulting in 10-15 intracellular bacteria per cell within 3 h of infection. Electron microscopy, pulse-chase infection assays and time-lapse multiphoton laser confocal microscopy demonstrated that the mechanism involved active and rapid migration of the pathogen into the subcellular space (termed 'subvasion'), followed by bacterial entry ('invasion') at the cell basis. Efficient subvasion was maximal after repeated rounds of selection for the subvasive phenotype. Targeted mutagenesis indicated that the CadF, JlpA or PEB1 adhesins were not required. Dissection of the selected and parental phenotypes by SDS-PAGE yielded comparable capsule polysaccharide and lipooligosaccharide profiles. Proteomics revealed reduced amounts of the chemotaxis protein CheW for the subvasive phenotype. Swarming assays confirmed that the selected phenotype exhibited altered migration behaviour. Introduction of a plasmid carrying chemotaxis genes into the subvasive strain yielded wild-type subvasion levels and migration behaviour. These results indicate that alterations in the bacterial migration machinery enable C. jejuni to actively penetrate the subcellular space and gain access to the cell interior with unprecedented efficiency.


Assuntos
Campylobacter jejuni/fisiologia , Células Epiteliais/microbiologia , Espaço Intracelular/microbiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/fisiologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Campylobacter jejuni/química , Campylobacter jejuni/genética , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Linhagem Celular , Quimiotaxia/genética , Quimiotaxia/fisiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Células Epiteliais/ultraestrutura , Teste de Complementação Genética , Humanos , Espaço Intracelular/ultraestrutura , Lipopolissacarídeos/análise , Locomoção/fisiologia , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Microscopia de Vídeo , Dados de Sequência Molecular , Mutagênese Insercional , Polissacarídeos Bacterianos/análise , Proteoma/análise , Análise de Sequência de DNA
10.
J Infect Dis ; 185(2): 262-5, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11807702

RESUMO

Campylobacter jejuni is the prime cause of foodborne bacterial gastroenteritis. An important complication of C. jejuni enteritis is Guillain-Barré syndrome (GBS), an immune-mediated disorder of the peripheral nerve. The presence of C. jejuni DNA in peripheral blood mononuclear cells (PBMC) of patients with GBS, patients with C. jejuni enteritis, and healthy subjects was studied. Two target genes, the flagellin and the ceuE genes, were used for polymerase chain reaction (PCR) identification of Campylobacter species in DNA extracted from PBMC. Approximately 30% of the healthy subjects and 50% of the patients with GBS had PBMC containing C. jejuni DNA as verified by Southern blot analysis or sequencing of the PCR products. Cell sorting revealed that Campylobacter DNA was present in CD14(+) and CD33(+) populations, indicating that cells from the myelomonocytic lineage are the Campylobacter DNA-carrying cells. These findings show that Campylobacter DNA is present in blood cells of healthy humans, although viable bacteria could not be demonstrated.


Assuntos
Campylobacter jejuni/isolamento & purificação , DNA Bacteriano/sangue , Síndrome de Guillain-Barré/microbiologia , Leucócitos Mononucleares/microbiologia , Campylobacter jejuni/genética , Humanos , Reação em Cadeia da Polimerase
11.
Microbiology (Reading) ; 145 ( Pt 8): 2145-2151, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10463181

RESUMO

Given the lack of functional transposons for use in Campylobacter spp., an alternative method of insertional mutagenesis using natural transformation was developed. High efficiencies of transformation were only obtained with species-specific DNA. This feature was a key element in the construction of mutant libraries of this bacterium. A chromosomal library of Campylobacter jejuni 81116 DNA was made in shuttle vector pUOA18. Next, a kanamycin-resistance (KmR) cassette was ligated into the inserts of the plasmids. C. jejuni 81116 was then transformed with the resulting products to allow homologous recombination between genomic fragments present in the shuttle vector and the chromosome. Transformants were pooled and chromosomal DNA from these transformants was used to retransform C. jejuni 81116. This resulted in transformants containing the KmR cassette in the chromosome but lacking the vector. In order to evaluate this approach for the construction of a mutant bank, the KmR insertional mutants were screened for loss of motility. Partial characterization of 11 non-motile mutants indicated that the inserted genes are involved in motility. Four mutants had the KmR cassette inserted in genes involved in flagella biosynthesis, namely flaA/B, neuB and flgK, and produced incomplete or no flagella. Four mutants had the KmR cassette inserted in genes possibly involved in flagella motor function: pflA, fliM and orf1 downstream of the fliN gene. Three mutants had the KmR cassette inserted in genes that are homologous to genes encoding hypothetical proteins of Helicobacter pylori.


Assuntos
Campylobacter/genética , Biblioteca Gênica , Mutagênese Insercional , Transformação Bacteriana , Southern Blotting , Campylobacter/fisiologia , Campylobacter/ultraestrutura , Linhagem Celular , DNA Bacteriano , Flagelos/genética , Flagelos/metabolismo , Recombinação Genética , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA