Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727375

RESUMO

Carbon nanotubes (CNTs) are well known for their outstanding field emission (FE) performance, facilitated by their unique combination of electrical, mechanical, and thermal properties. However, if the substrate of choice is a poor conductor, the electron supply towards the CNTs can be limited, restricting the FE current. Furthermore, ineffective heat dissipation can lead to emitter-substrate bond degradation, shortening the field emitters' lifetime. Herein, temperature-stable titanium nitride (TiN) was deposited by plasma-enhanced atomic layer deposition (PEALD) on different substrate types prior to the CNT growth. A turn-on field reduction of up to 59% was found for the emitters that were generated on TiN-coated bulk substrates instead of on pristine ones. This observation was attributed exclusively to the TiN layer as no significant change in the emitter morphology could be identified. The fabrication route and, consequently, improved FE properties were transferred from bulk substrates to free-standing, electrically insulating nanomembranes. Moreover, 3D-printed, polymeric microstructures were overcoated by atomic layer deposition (ALD) employing its high conformality. The results of our approach by combining ALD with CNT growth could assist the future fabrication of highly efficient field emitters on 3D scaffold structures regardless of the substrate material.

2.
ACS Omega ; 9(9): 10602-10609, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463327

RESUMO

Mass spectrometry is a crucial technology in numerous applications, but it places stringent requirements on the detector to achieve high resolution across a broad spectrum of ion masses. Low-dimensional nanostructures offer opportunities to tailor properties and achieve performance not reachable in bulk materials. Here, an array of sharp zinc oxide wires was directly grown on a 30 nm thin, free-standing silicon nitride nanomembrane to enhance its field emission (FE). The nanomembrane was subsequently used as a matrix-assisted laser desorption/ionization time-of-flight mass spectrometry detector. When ionized biomolecules impinge on the backside of the surface-modified nanomembrane, the current-emitted from the wires on the membrane's front side-is amplified by the supplied thermal energy, which allows for the detection of the ions. An extensive simulation framework was developed based on a combination of lateral heat diffusion in the nanomembrane, heat diffusion along the wires, and FE, including Schottky barrier lowering, to investigate the impact of wire length and diameter on the FE. Our theoretical model suggests a significant improvement in the overall FE response of the nanomembrane by growing wires on top. Specifically, long thin wires are ideal to enhance the magnitude of the FE signal and to shorten its duration for the fastest response simultaneously, which could facilitate the future application of detectors in mass spectrometry with properties improved by low-dimensional nanostructures.

3.
Nanomaterials (Basel) ; 13(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133018

RESUMO

The temperature-dependent intensities of the exciton (X) and biexciton (XX) peaks from single GaAs cone-shell quantum dots (QDs) are studied with micro photoluminescence (PL) at varied excitation power and QD size. The QDs are fabricated by filling self-assembled nanoholes, which are drilled in an AlGaAs barrier by local droplet etching (LDE) during molecular beam epitaxy (MBE). This method allows the fabrication of strain-free QDs with sizes precisely controlled by the amount of material deposited for hole filling. Starting from the base temperature T = 3.2 K of the cryostat, single-dot PL measurements demonstrate a strong enhancement of the exciton emission up to a factor of five with increasing T. Both the maximum exciton intensity and the temperature Tx,max of the maximum intensity depend on excitation power and dot size. At an elevated excitation power, Tx,max becomes larger than 30 K. This allows an operation using an inexpensive and compact Stirling cryocooler. Above Tx,max, the exciton intensity decreases strongly until it disappears. The experimental data are quantitatively reproduced by a model which considers the competing processes of exciton generation, annihilation, and recombination. Exciton generation in the QDs is achieved by the sum of direct excitation in the dot, plus additional bulk excitons diffusing from the barrier layers into the dot. The thermally driven bulk-exciton diffusion from the barriers causes the temperature enhancement of the exciton emission. Above Tx,max, the intensity decreases due to exciton annihilation processes. In comparison to the exciton, the biexciton intensity shows only very weak enhancement, which is attributed to more efficient annihilation processes.

4.
Phys Chem Chem Phys ; 25(10): 7312-7322, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36815547

RESUMO

Top-down proteomics deals with the characterization of intact biomolecules, which reduces the sample complexity and facilitates the detection of modifications at the protein level. The combination of the matrix-assisted laser desorption/ionization (MALDI) technique with time-of-flight (TOF) mass analysis allows for the generation of gaseous ions in low charge states from high-mass biomolecules, followed by their mass-to-charge ratio (m/z) separation, as high-mass ions drift down the flight tube more slowly than lighter ones. However, the detection efficiency of conventional microchannel plate (MCP) detectors is strongly reduced with decreasing ion velocity-corresponding to an increase in ion mass-which impedes the reliable detection of high-mass biomolecules. Herein, we present a simple modification of the MCP detector that allows for the amplification of the signal from ionized proteins of up to m/z 150 000. Two circular electrodes were assembled in front of the conventional detector and set to negative electrical voltages to affect the positively charged ions directly before they impinge on the MCP, possibly through a combination of a velocity boost and ion optical effects. In the present study, three booster electrode configurations were experimentally tested to maximize the signal intensification. Compared to the conventional MCP assembly, the signal intensity was amplified in a proof-of-concept experiment by a factor of 24.3 and of 10.7 for the singly charged BSA ion (m/z 66 400) and for the singly charged IgG ion (m/z 150 000), respectively, by applying the booster-MCP (BMCP) detector.

5.
Phys Rev Lett ; 128(25): 256601, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35802443

RESUMO

Any departure from graphene's flatness leads to the emergence of artificial gauge fields that act on the motion of the Dirac fermions through an associated pseudomagnetic field. Here, we demonstrate the tunability of strong gauge fields in nonlocal experiments using a large planar graphene sheet that conforms to the deformation of a piezoelectric layer by a surface acoustic wave. The acoustic wave induces a longitudinal and a giant synthetic Hall voltage in the absence of external magnetic fields. The superposition of a synthetic Hall potential and a conventional Hall voltage can annihilate the sample's transverse potential at large external magnetic fields. Surface acoustic waves thus provide a promising and facile avenue for the exploitation of gauge fields in large planar graphene systems.

6.
Nanomaterials (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947706

RESUMO

The possibility to gradually increase the porosity of thin films facilitates a variety of applications, such as anti-reflective coatings, diffusion membranes, and the herein investigated tailored nanostructuring of a substrate for subsequent self-assembly processes. A low-temperature (<160 °C) preparation route for porous silicon oxide (porSiO2) thin films with porosities of about 60% and effective refractive indices down to 1.20 is tailored for bulk as well as free-standing membranes. Subsequently, both substrate types are successfully employed for the catalyst-assisted growth of nanowire-like zinc oxide (ZnO) field emitters by metal organic chemical vapor deposition. ZnO nanowires can be grown with a large aspect ratio and exhibit a good thermal and chemical stability, which makes them excellent candidates for field emitter arrays. We present a method that allows for the direct synthesis of nanowire-like ZnO field emitters on free-standing membranes using a porSiO2 template. Besides the application of porSiO2 for the catalyst-assisted growth of nanostructures and their use as field emission devices, the herein presented general synthesis route for the preparation of low refractive index films on other than bulk substrates-such as on free-standing, ultra-thin membranes-may pave the way for the employment of porSiO2 in micro-electro-mechanical systems.

7.
Nanoscale ; 13(47): 20052-20066, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34842880

RESUMO

Nanowire arrays used as cell culture substrates build a potent tool for advanced biological applications such as cargo delivery and biosensing. The unique topography of nanowire arrays, however, renders them a challenging growth environment for cells and explains why only basic cell lines have been employed in existing studies. Here, we present the culturing of human induced pluripotent stem cell-derived neural progenitor cells on rectangularly arranged nanowire arrays: In detail, we mapped the impact on proliferation, viability, and topography-induced membrane deformation across a multitude of array pitches (1, 3, 5, 10 µm) and nanowire lengths (1.5, 3, 5 µm). Against the intuitive expectation, a reduced proliferation was found on the arrays with the smallest array pitch of 1 µm and long NWs. Typically, cells settle in a fakir-like state on such densely-spaced nanowires and thus experience no substantial stress caused by nanowires indenting the cell membrane. However, imaging of F-actin showed a distinct reorganization of the cytoskeleton along the nanowire tips in the case of small array pitches interfering with regular proliferation. For larger pitches, the cell numbers depend on the NW lengths but proliferation generally continued although heavy deformations of the cell membrane were observed caused by the encapsulation of the nanowires. Moreover, we noticed a strong interaction of the nanowires with the nucleus in terms of squeezing and indenting. Remarkably, the cell viability is maintained at about 85% despite the massive deformation of the cells. Considering the enormous potential of human induced stem cells to study neurodegenerative diseases and the high cellular viability combined with a strong interaction with nanowire arrays, we believe that our results pave the way to apply nanowire arrays to human stem cells for future applications in stem cell research and regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanofios , Células-Tronco Neurais , Linhagem Celular , Proliferação de Células , Humanos
8.
Phys Rev Lett ; 127(18): 184301, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767395

RESUMO

We investigate the sideband spectra of a driven nonlinear mode with its eigenfrequency being modulated at a low frequency (<1 kHz). This additional parametric modulation leads to prominent antiresonance line shapes in the sideband spectra, which can be controlled through the vibration state of the driven mode. We also establish a direct connection between the antiresonance frequency and the squeezing of thermal fluctuation in the system. Our Letter not only provides a simple and robust method for squeezing characterization, but also opens a new possibility toward sideband applications.

9.
Sci Rep ; 11(1): 18819, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552130

RESUMO

Nanostructured cell culture substrates featuring nanowire (NW) arrays have been applied to a variety of basic cell lines and rodent neurons to investigate cellular behavior or to stimulate cell responses. However, patient-derived human neurons-a prerequisite for studying e.g. neurodegenerative diseases efficiently-are rarely employed due to sensitive cell culture protocols and usually long culturing periods. Here, we present human patient induced pluripotent stem cell-derived neurons cultured on densely-spaced spiky silicon NW arrays (600 NWs/ 100 µm[Formula: see text] with NW lengths of 1 µm) which show mature electrophysiological characteristics after only 20 days of culturing. Exemplary neuronal growth and network formation on the NW arrays are demonstrated using scanning electron microscopy and immunofluorescence microscopy. The cells and neurites rest in a fakir-like settling state on the NWs only in contact with the very NW tips shown by cross-sectional imaging of the cell/NW interface using focused ion beam milling and confocal laser scanning microscopy. Furthermore, the NW arrays promote the cell culture by slightly increasing the share of differentiated neurons determined by the quantification of immunofluorescence microscopy images. The electrophysiological functionality of the neurons is confirmed with patch-clamp recordings showing the excellent capability to fire action potentials. We believe that the short culturing time to obtain functional human neurons generated from patient-derived neural progenitor cells and the robustness of this differentiation protocol to produce these neurons on densely-spaced spiky nanowire arrays open up new pathways for stem cell characterization and neurodegenerative disease studies.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/fisiologia , Nanofios , Células-Tronco Neurais/fisiologia , Silício , Humanos , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Células-Tronco Neurais/ultraestrutura
10.
Nanomaterials (Basel) ; 11(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924052

RESUMO

TiO2 thin films deposited by atomic layer deposition (ALD) at low temperatures (<100 °C) are, in general, amorphous and exhibit a smaller refractive index in comparison to their crystalline counterparts. Nonetheless, low-temperature ALD is needed when the substrates or templates are based on polymeric materials, as the deposition has to be performed below their glass transition or melting temperatures. This is the case for photonic crystals generated via ALD infiltration of self-assembled polystyrene templates. When heated up, crystal phase transformations take place in the thin films or photonic structures, and the accompanying volume reduction as well as the burn-out of residual impurities can lead to mechanical instability. The introduction of cation doping (e.g., Al or Nb) in bulk TiO2 parts is known to alter phase transitions and to stabilize crystalline phases. In this work, we have developed low-temperature ALD super-cycles to introduce Al2O3 into TiO2 thin films and photonic crystals. The aluminum oxide content was adjusted by varying the TiO2:Al2O3 internal loop ratio within the ALD super-cycle. Both thin films and inverse opal photonic crystal structures were subjected to thermal treatments ranging from 200 to 1200 °C and were characterized by in- and ex-situ X-ray diffraction, spectroscopic ellipsometry, and spectroscopic reflectance measurements. The results show that the introduction of alumina affects the crystallization and phase transition temperatures of titania as well as the optical properties of the inverse opal photonic crystals (iPhC). The thermal stability of the titania iPhCs was increased by the alumina introduction, maintaining their photonic bandgap even after heat treatment at 900 °C and outperforming the pure titania, with the best results being achieved with the super-cycles corresponding to an estimated alumina content of 26 wt.%.

11.
ACS Nano ; 14(10): 13091-13102, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33058673

RESUMO

Brain-on-a-chip (BoC) concepts should consider three-dimensional (3D) scaffolds to mimic the 3D nature of the human brain not accessible by conventional planar cell culturing. Furthermore, the essential key to adequately address drug development for human pathophysiological diseases of the nervous system, such as Parkinson's or Alzheimer's, is to employ human induced pluripotent stem cell (iPSC)-derived neurons instead of neurons from animal models. To address both issues, we present electrophysiologically mature human iPSC-derived neurons cultured in BoC applicable microscaffolds prepared by direct laser writing. 3D nanoprinted tailor-made elevated cavities interconnected by freestanding microchannels were used to create defined neuronal networks-as a proof of concept-with two-dimensional topology. The neuronal outgrowth in these nonplanar structures was investigated, among others, in terms of neurite length, size of continuous networks, and branching behavior using z-stacks prepared by confocal microscopy and cross-sectional scanning electron microscopy images prepared by focused ion beam milling. Functionality of the human iPSC-derived neurons was demonstrated with patch clamp measurements in both current- and voltage-clamp mode. Action potentials and spontaneous excitatory postsynaptic currents-fundamental prerequisites for proper network signaling-prove full integrity of these artificial neuronal networks. Considering the network formation occurring within only a few days and the versatile nature of direct laser writing to create even more complex scaffolds for 3D network topologies, we believe that our study offers additional approaches in human disease research to mimic the complex interconnectivity of the human brain in BoC studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Encéfalo , Estudos Transversais , Humanos , Dispositivos Lab-On-A-Chip , Neurônios
12.
Rev Sci Instrum ; 91(8): 085108, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32872940

RESUMO

Free liquid jets are a common sample delivery method in serial femtosecond x-ray (SFX) crystallography. Gas dynamic virtual nozzles (GDVNs) use an outer gas stream to focus a liquid jet down to a few micrometers in diameter. Such nozzles can be fabricated through various methods (capillary grinding, soft lithography, digital light processing, and two-photon polymerization) and materials, such as glass, polydimethylsiloxane, and photosensitive polyacrylates. Here, we present a broadly accessible, rapid prototyping laser ablation approach to micromachine solvent-resistant and inert Kapton polyimide foils with highly reproducible geometric features that result in 3D flow-focused GDVNs suitable for crystallography experiments at synchrotrons and free-electron laser facilities.

13.
Small ; 16(33): e2001580, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627903

RESUMO

The applicability of nanomechanical devices for computational approaches is reviewed. The focus is on the representation and processing of information based on nanomechanical bits. Several device concepts are discussed ranging from nano-electromechanical systems in silicon to circuits based on carbon nano-tube switches, combinations of nanomechanical resonators and traditional transistors, and integration into a computing architecture. The strengths of mechanical systems include their scalability, robustness to external electrical shocks, and their low-energy consumption. Hence, they may lead the way to new forms of ultradense memory and alternative routes of computing. In conjunction with quantum mechanical single electron circuits, nano-electromechanical systems may also have potential for quantum computational circuits.

14.
Bioengineering (Basel) ; 7(2)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455868

RESUMO

Though patch clamping at room temperature is a widely disseminated standard procedure in the electrophysiological community, it does not represent the biological system in mammals at around 37 °C. In order to better mimic the natural environment in electrophysiological studies, we present a custom-built, temperature-controlled patch clamp platform for upright microscopes, which can easily be adapted to any upright patch clamp setup independently, whether commercially available or home built. Our setup can both cool and heat the platform having only small temperature variations of less than 0.5 °C. We demonstrate our setup with patch clamp measurements at 36 °C on Jurkat T lymphocytes and human induced pluripotent stem cell-derived neurons. Passive membrane parameters and characteristic electrophysiological properties, such as the gating properties of voltage-gated ion channels and the firing of action potentials, are compared to measurements at room temperature. We observe that many processes that are not explicitly considered as temperature dependent show changes with temperature. Thus, we believe in the need of a temperature control in patch clamp measurements if improved physiological conditions are required. Furthermore, we advise researchers to only compare electrophysiological results directly that have been measured at similar temperatures since small variations in cellular properties might be caused by temperature alterations.

15.
Biomater Sci ; 8(9): 2434-2446, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32319455

RESUMO

Nanostructured substrates such as nanowire arrays form a powerful tool for building next-generation medical devices. So far, human pluripotent stem cell-derived neurons-a revolutionary tool for studying physiological function and modeling neurodegenerative diseases-have not been applied to such innovative substrates, due to the highly demanding nature of stem cell quality control and directed differentiation procedures to generate specialized cell types. Our study closes this gap, by presenting electrophysiologically mature human pluripotent stem cell-derived neurons on a set of nanowires in different patterns and growth densities after only four weeks of maturation-thereof 14 to 16 days on the nanowire arrays. While cell viability is maintained on all nanowire substrates, the settling regime of the cells can be controlled and tuned by the nanowire density from a fakir-like state to a complete nanowire wrapping state. Especially, full electrophysiological integrity of the neurons independent of the settling regime has been revealed by patch clamp experiments showing characteristic action potentials. Based on these results, our protocol has the potential to open new pathways in stem cell research and regenerative medicine utilizing human stem cell-derived neurons on tailor-made nanostructured substrates.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/fisiologia , Sobrevivência Celular , Células Cultivadas , Humanos , Nanofios , Medicina Regenerativa , Compostos de Silício
16.
Nanoscale Adv ; 2(11): 5192-5200, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36132017

RESUMO

Directed guidance of neurites is a pre-requisite for tailor-made designs of interfaces between cells and semiconducting components. Grayscale lithography, reactive ion etching, and ultraviolet nanoimprint lithography are potent semiconductor industry-compatible techniques for a cost- and time-effective fabrication of modulated surfaces. In this work, neurite outgrowth of murine cerebellar neurons on 2.5D pathways produced with these methods is studied. Structures of micron-sized steps and grooves serve as cell culture platforms. The effects of contact guidance through topography and chemical guidance through selective poly-d-lysine coating on these platforms are analyzed. As a consequence, the herein presented fabrication approach can be utilized to cultivate and to study low-density neuronal networks in 2.5D configuration with a high degree of order.

17.
Sci Rep ; 9(1): 11379, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31388189

RESUMO

Self-assembled periodic structures out of monodisperse spherical particles, so-called opals, are a versatile approach to obtain 3D photonic crystals. We show that a thin conformal coating of only several nanometers can completely alter the reflection properties of such an opal. Specifically, a coating with a refractive index larger than that of the spherical particles can eliminate the first photonic band gap of opals. To explain this non-intuitive effect, where a nm-scaled coating results in a drastic change of optical properties at wavelengths a hundred times bigger, we split the permittivity distribution of the opal into a lattice function convoluted with that of core-shell particles as a motif. In reciprocal space, the Bragg peaks that define the first Brillouin zone can be eliminated if the motif function, which is multiplied, assumes zero at the Bragg peak positions. Therefore, we designed a non-monotonic refractive index distribution from the center of the particle through the shell into the background and adjusted the coating thickness. The theory is supported by simulations and experiments that a nanometer thin TiO2 coating via atomic layer deposition (ALD) on synthetic opals made from polystyrene particles induces nearly full transparency at a wavelength range where the uncoated opal strongly reflects. This effect paves the way for sensing applications such as monitoring the thicknesses growth in ALD in-situ and in real time as well as measuring a refractive index change without spectral interrogation.

18.
Langmuir ; 35(32): 10435-10445, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31318572

RESUMO

Advances in modern interface- and material sciences often rely on the understanding of a system's structure-function relationship. Designing reproducible experiments that yield in situ time-resolved structural information at fast time scales is therefore of great interest, e.g., for better understanding the early stages of self-assembly or other phase transitions. However, it can be challenging to accurately control experimental conditions, especially when samples are only available in small amounts, prone to agglomeration, or if X-ray compatibility is required. We address these challenges by presenting a microfluidic chip for triggering dynamics via rapid diffusive mixing for in situ time-resolved X-ray investigations. This polyimide/Kapton-only-based device can be used to study the structural dynamics and phase transitions of a wide range of colloidal and soft matter samples down to millisecond time scales. The novel multiangle laser ablation three-dimensional (3D) microstructuring approach combines, for the first time, the highly desirable characteristics of Kapton (high X-ray stability with low background, organic solvent compatibility) with a 3D flow-focusing geometry that minimizes mixing dispersion and wall agglomeration. As a model system, to demonstrate the performance of these 3D Kapton microfluidic devices, we selected the non-solvent-induced self-assembly of biocompatible and amphiphilic diblock copolymers. We then followed their structural evolution in situ at millisecond time scales using on-the-chip time-resolved small-angle X-ray scattering under continuous-flow conditions. Combined with complementary results from 3D finite-element method computational fluid dynamics simulations, we find that the nonsolvent mixing is mostly complete within a few tens of milliseconds, which triggers initial spherical micelle formation, while structural transitions into micelle lattices and their deswelling only occur on the hundreds of milliseconds to second time scale. These results could have an important implication for the design and formulation of amphiphilic polymer nanoparticles for industrial applications and their use as drug-delivery systems in medicine.

19.
Nanoscale ; 11(28): 13620-13631, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31290915

RESUMO

We present micro- and nanofluidic devices with 3D structures and nanochannels with multiple depths for the analysis of single molecules of DNA. Interfacing the nanochannels with graded and 3D inlets allows the improvement of the flow and controls not only the translocation speed of the DNA but also its conformation inside the nanochannels. The complex, multilevel, multiscale fluidic circuits are patterned in a simple, two-minute imprinting step. The stamp, the key of the technology, is directly milled by focused ion beam, which allows patterning nanochannels with different cross sections and depths, together with 3D transient inlets, all at once. Having such a variety of structures integrated in the same sample allows studying, optimizing and directly comparing their effect on the DNA flow. Here, DNA translocation is studied in long (160 µm) and short (5-40 µm) nanochannels. We study the homogeneity of the stretched molecules in long, meander nanochannels made with this technology. In addition, we analyze the effect of the different types of inlet structures interfacing short nanochannels. We observe pre-stretching and an optimal flow, and no hairpin formation, when the inlets have gradually decreasing widths and depths. In contrast, when the nanochannels are faced with an abrupt transition, we observe clogging and hairpin formation. In addition, 3D inlets strongly decrease the DNA molecules' speed before they enter the nanochannels, and help capturing more DNA molecules. The robustness and versatility of this technology and DNA testing results evidence the potential of imprinted devices in biomedical applications as low cost, disposable lab-on-a-chip devices.


Assuntos
DNA/química , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Conformação de Ácido Nucleico
20.
ACS Nano ; 13(6): 6596-6604, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31095366

RESUMO

The hydrophobic collapse is a structural transition of grafted polymer chains in a poor solvent. Although such a transition seems an intrinsic event during clustering of polymer-stabilized nanoparticles in the liquid phase, it has not been resolved in real time. In this work, we implemented a microfluidic 3D-flow-focusing mixing reactor equipped with real-time analytics, small-angle X-ray scattering (SAXS), and UV-vis-NIR spectroscopy to study the early stage of cluster formation for polystyrene-stabilized gold nanoparticles. The polymer shell dynamics obtained by in situ SAXS analysis and numerical simulation of the solvent composition allowed us to map the interaction energy between the particles at early state of solvent mixing, 30 ms behind the crossing point. We found that the rate of hydrophobic collapse depends on water concentration, ranging between 100 and 500 nm/s. Importantly, we confirmed that the polymer shell collapses prior to the commencement of clustering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA