Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Neurol ; 354: 114111, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35569510

RESUMO

Deep brain stimulation (DBS) has been successfully applied in various neurodegenerative diseases as an effective symptomatic treatment. However, its mechanisms of action within the brain network are still poorly understood. Many virtual DBS models analyze a subnetwork around the basal ganglia and its dynamics as a spiking network with their details validated by experimental data. However, connectomic evidence shows widespread effects of DBS affecting many different cortical and subcortical areas. From a clinical perspective, various effects of DBS besides the motoric impact have been demonstrated. The neuroinformatics platform The Virtual Brain (TVB) offers a modeling framework allowing us to virtually perform stimulation, including DBS, and forecast the outcome from a dynamic systems perspective prior to invasive surgery with DBS lead placement. For an accurate prediction of the effects of DBS, we implement a detailed spiking model of the basal ganglia, which we combine with TVB via our previously developed co-simulation environment. This multiscale co-simulation approach builds on the extensive previous literature of spiking models of the basal ganglia while simultaneously offering a whole-brain perspective on widespread effects of the stimulation going beyond the motor circuit. In the first demonstration of our model, we show that virtual DBS can move the firing rates of a Parkinson's disease patient's thalamus - basal ganglia network towards the healthy regime while, at the same time, altering the activity in distributed cortical regions with a pronounced effect in frontal regions. Thus, we provide proof of concept for virtual DBS in a co-simulation environment with TVB. The developed modeling approach has the potential to optimize DBS lead placement and configuration and forecast the success of DBS treatment for individual patients.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Gânglios da Base/fisiologia , Encéfalo , Humanos , Doença de Parkinson/terapia , Tálamo/fisiologia
2.
Neuroimage ; 251: 118973, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35131433

RESUMO

The Virtual Brain (TVB) is now available as open-source services on the cloud research platform EBRAINS (ebrains.eu). It offers software for constructing, simulating and analysing brain network models including the TVB simulator; magnetic resonance imaging (MRI) processing pipelines to extract structural and functional brain networks; combined simulation of large-scale brain networks with small-scale spiking networks; automatic conversion of user-specified model equations into fast simulation code; simulation-ready brain models of patients and healthy volunteers; Bayesian parameter optimization in epilepsy patient models; data and software for mouse brain simulation; and extensive educational material. TVB cloud services facilitate reproducible online collaboration and discovery of data assets, models, and software embedded in scalable and secure workflows, a precondition for research on large cohort data sets, better generalizability, and clinical translation.


Assuntos
Encéfalo , Computação em Nuvem , Animais , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA