Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosensors (Basel) ; 12(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35884243

RESUMO

Pseudomonas aeruginosa, an opportunistic Gram-negative bacterium, is one of the main sources of infections in healthcare environments, making its detection very important. N-3-oxo-dodecanoyl L-homoserine lactone (3-O-C12-HSL) is a characteristic molecule of quorum sensing-a form of cell-to-cell communication between bacteria-in P. aeruginosa. Its detection can allow the determination of the bacterial population. In this study, the development of the first electrochemical aptasensor for the detection of 3-O-C12-HSL is reported. A carbon-based screen-printed electrode modified with gold nanoparticles proved to be the best platform for the aptasensor. Each step in the fabrication of the aptasensor (i.e., gold nanoparticles' deposition, aptamer immobilization, incubation with the analyte) was optimized and characterized using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Different redox probes in solution were evaluated, the best results being obtained in the presence of [Fe(CN)6]4-/[Fe(CN)6]3-. The binding affinity of 106.7 nM for the immobilized thiol-terminated aptamer was determined using surface plasmon resonance. The quantification of 3-O-C12-HSL was performed by using the electrochemical signal of the redox probe before and after incubation with the analyte. The aptasensor exhibited a logarithmic range from 0.5 to 30 µM, with a limit of detection of 145 ng mL-1 (0.5 µM). The aptasensor was successfully applied for the analysis of real samples (e.g., spiked urine samples, spiked microbiological growth media, and microbiological cultures).


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Atenção à Saúde , Técnicas Eletroquímicas/métodos , Ouro/química , Nanopartículas Metálicas/química , Pseudomonas aeruginosa , Percepção de Quorum
2.
Food Chem ; 371: 131127, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34649198

RESUMO

Several gold platforms of different morphologies were investigated in the elaboration of a new aptasensor for oxytetracycline. Au-nanostructures were electrochemically synthesized from solutions of different concentrations of HAuCl4 in different media by chronoamperometry, multipulse amperometry, and chronopotentiometry, respectively at carbon-based screen-printed electrodes (C-SPE). The nano-/micro-scale morphologies of the patterned surfaces and elemental composition were examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy, respectively. The electrochemical properties of the obtained gold nanostructured platforms (AuNSs|C-SPE) were investigated to achieve optimal aptamer coverage. The results showed that the aptasensor developed using the platform with thistle-like AuNSs exhibited the highest conductivity in terms of ferrocene signal and the largest effective area. Under optimal conditions, a linear range from 5.0 × 10-8 M to 1.2 × 10-6 M, with a limit of detection (LOD) of 8.7 × 10-9 M OXT were obtained, which is about 20 times lower than the EU regulations for OXT residues in milk. The electrochemical aptasensor was able to discriminate other antibacterial agents, such as amoxicillin, ampicillin, gentamicin, tetracycline, and vancomycin and was successfully applied in milk samples. This "signal-on" aptasensing approach provides a simple and cost-effective disposable sensor that could be easily applied for the on-site determination of antibiotics.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Nanoestruturas , Oxitetraciclina , Animais , Técnicas Eletroquímicas , Eletrodos , Ouro , Limite de Detecção , Leite/química , Oxitetraciclina/análise
3.
ACS Sens ; 5(11): 3501-3509, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33118815

RESUMO

The use of a photocatalyst (photosensitizer) which produces singlet oxygen instead of enzymes for oxidizing analytes creates opportunities for designing cost-efficient and sensitive photoelectrochemical sensors. We report that perfluoroisopropyl-substituted zinc phthalocyanine (F64PcZn) interacts specifically with a complex phenolic compound, the antibiotic rifampicin (RIF), but not with hydroquinone or another complex phenolic compound, the antibiotic doxycycline. The specificity is imparted by the selective preconcentration of RIF in the photocatalytic layer, as revealed by electrochemical and optical measurements, complemented by molecular modeling that confirms the important role of a hydrophobic cavity formed by the iso-perfluoropropyl groups of the photocatalyst. The preconcentration effect favorably enhances the RIF photoelectrochemical detection limit as well as sensitivity to nanomolar (ppb) concentrations, LOD = 7 nM (6 ppb) and 2.8 A·M-1·cm-2, respectively. The selectivity to RIF, retained in the photosensitizer layer, is further enhanced by the selective removal of all unretained phenols via simple washing of the electrodes with pure buffer. The utility of the sensor for analyzing municipal wastewater was demonstrated. This first demonstration of enhanced selectivity and sensitivity due to intrinsic interactions of a molecular photocatalyst (photosensitizer) with an analyte, without use of a biorecognition element, may allow the design of related, robust, simple, and viable sensors.


Assuntos
Fármacos Fotossensibilizantes , Oxigênio Singlete , Antibacterianos , Eletrodos , Interações Hidrofóbicas e Hidrofílicas
4.
Biosensors (Basel) ; 9(1)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818825

RESUMO

In this study, a new electrochemical sensor was developed for the detection of cefalexin (CFX), based on the use of a molecularly imprinted polymer (MIP) obtained by electro‒polymerization in an aqueous medium of indole-3-acetic acid (I3AA) on a glassy carbon electrode (GCE) and on boron-doped diamond electrode (BDDE). The two different electrodes were used in order to assess how their structural differences and the difference in the potential applied during electrogeneration of the MIP translate to the performances of the MIP sensor. The quantification of CFX was performed by using the electrochemical signal of a redox probe before and after the rebinding of the template. The modified electrode was characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of different parameters on the fabrication of the sensor was tested, and the optimized method presented high selectivity and sensitivity. The MIP-based electrode presented a linear response for CFX concentration range of 10 to 1000 nM, and a limit of detection of 3.2 nM and 4.9 nM was obtained for the BDDE and the GCE, respectively. The activity of the sensor was successfully tested in the presence of some other cephalosporins and of other pharmaceutical compounds. The developed method was successfully applied to the detection of cefalexin from real environmental and pharmaceutical samples.


Assuntos
Técnicas Biossensoriais , Cefalexina/isolamento & purificação , Técnicas Eletroquímicas , Impressão Molecular , Cefalexina/química , Humanos , Limite de Detecção , Microscopia de Força Atômica , Polímeros/química
5.
Anal Bioanal Chem ; 411(5): 1053-1065, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30627797

RESUMO

Surface plasmon resonance technique is highly sensitive to various processes taking place on a metal film and it has emerged as a powerful label-free method to study molecular binding processes taking place on a surface. Another important but less explored area of applications is the use of hybrid methods which combine electrochemistry with optical methods for better monitoring and understanding of biochemical processes. A detection method based on surface plasmon resonance was developed for ampicillin, applying electrochemical techniques for the elaboration and characterization of the aptasensing platform used in this study. Ampicillin is a broad-spectrum ß-lactam antibiotic, used both in human and veterinary medicine for the treatment and prevention of primary respiratory, gastrointestinal, urogenital, and skin bacterial infections. It is widely used because of its broad spectrum and low cost. This widespread use can result in the presence of residues in the environment and in food leading to health problems for individuals who are hypersensitive to penicillins. The gold chip was functionalized through potential-assisted immobilization, using multipulse amperometry, first with a thiol-terminated aptamer, as a specific ligand and secondly, using the same procedure, with mercaptohexanol, used to cover the unoccupied binding sites on the gold surface in order to prevent the nonspecific adsorption of ampicillin molecules. After establishing the optimal conditions for the chip functionalization, different concentrations of ampicillin were detected in real time, in the range of 2.5-1000 µmol L-1, with a limit of detection of 1 µmol L-1, monitoring the surface plasmon resonance response. The selectivity of the aptasensor was proven in the presence of other antibiotics and drugs, and the method was successfully applied for the detection of ampicillin from river water. Graphical abstract ᅟ.


Assuntos
Ampicilina/análise , Antibacterianos/análise , Aptâmeros de Nucleotídeos/química , Ressonância de Plasmônio de Superfície/métodos , Poluentes Químicos da Água/análise , Técnicas Eletroquímicas/métodos , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA