Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(54): 6945-6948, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38887799

RESUMO

This study investigates post-synthetic ligand exchange in a series of copper(II) and chromium(II) cuboctahedral cages of the formula M24(R-bdc)24 through solvent-free mechanochemistry for the preparation of mixed-ligand cages. While solvent-based ligand exchange does not proceed when the cages are insoluble or when they are dissolved in non-coordinating solvents, solvent-free mechanochemistry can be used to prepare a number of mixed-ligand cages featuring a variety of functional groups regardless of cage solubility. We further extend this strategy to intercage ligand exchange reactions where the solid-state reaction of cages proceeds in just ten minutes while corresponding solvent-based reactions require more than one week of reaction time. The results highlight mechanochemically-facilitated ligand exchange as an exceptionally facile and efficient method for the production of mixed-ligand cuboctahedral cages.

2.
Dalton Trans ; 53(9): 4005-4009, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38314611

RESUMO

Chemically and thermally stable permanently porous coordination cages are appealing candidates for separations, catalysis, and as the porous component of new porous liquids. However, many of these applications have not turned to microporous cages as a result of their poor solubility and thermal or hydrolytic stability. Here we describe the design and modular synthesis of iron and cobalt cages where the carboxylate groups of the bridging ligands of well-known calixarene capped coordination cages have been replaced with more basic triazole units. The resultingly higher M-L bond strengths afford highly stable cages that are amenable to modular synthetic approaches and potential functionalization or modification. Owing to the robust nature of these cages, they are highly processable and are isolable in various physical states with tunable porosity depending on the solvation methods used. As the structural integrity of the cages is maintained upon high activation temperatures, apparent losses in porosity can be mediated by resolvation and crystallization or precipitation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38047592

RESUMO

Enormous efforts have been made to convert biomass to liquid fuels and products catalytically. Long molecules with a suitable structure are ideal precursors for fuels and value-added products. Here, a C21 oxygenate was synthesized for the first time in one step through aldol condensation of furfural and acetone over the amine-functionalized zirconium-based metal-organic framework (MOF), UiO-66-NH2. Structural changes of UiO-66-NH2 were investigated to improve the yield and evaluate the role of the ligand, cluster node, defectiveness, modulator, surface area, and textural properties on the product distribution. We demonstrate the possibility of making long-chain oxygenates without using vegetable oil-derived fatty acids toward 100% waste biomass-derived renewable fuels, lubricants, and surfactants.

4.
J Am Chem Soc ; 145(46): 25068-25073, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37939007

RESUMO

Synthetic porous materials continue to garner attention as platforms for solid-state chemistry and as designer heterogeneous catalysts. Applications in photochemistry and photocatalysis, however, are plagued by poor light harvesting efficiency due to light scattering resulting from sample microcrystallinity and poor optical penetration that arises from inner filter effects. Here we demonstrate the layer-by-layer growth of optically transparent, photochemically active thin films of porous salts. Films are grown by sequential deposition of cationic Zr-based porous coordination cages and anionic Mn porphyrins. Photolysis facilitates the efficient reduction of Mn(III) sites to Mn(II) sites, which can be observed in real-time by transmission UV-vis spectroscopy. Film porosity enables substrate access to the Mn(II) sites and facilitates reversible O2 activation in the solid state. These results establish optically transparent, porous salt thin films as versatile platforms for solid-state photochemistry and in operando spectroscopy.

5.
RSC Adv ; 13(38): 26892-26895, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37692347

RESUMO

Metal-organic frameworks (MOFs) have garnered significant attention as gas storage materials due to their exceptional surface areas and customizable pore chemistry. For applications in the storage of small molecules for vehicular transportation, achieving high volumetric capacities is crucial. In this study, we demonstrate the compression of UiO-66 and a series of its functionalized analogs at elevated pressures, resulting in the formation of robust pellets with significantly increased volumetric surface areas. The optimal compression pressure is found to be contingent on the specific nature of the functional group attached to the organic linker in the MOF material.

6.
J Am Chem Soc ; 145(40): 21955-21965, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37772785

RESUMO

A proposed low-energy alternative to the separation of alkanes from alkenes by energy-intensive cryogenic distillation is separation by porous adsorbents. Unfortunately, most adsorbents preferentially take up the desired, high-value major component alkene, requiring frequent regeneration. Adsorbents with inverse selectivity for the minor component alkane would enable the direct production of purified, reagent-grade alkene, greatly reducing global energy consumption. However, such materials are exceedingly rare, especially for propane/propylene separation. Here, we report that through adaptive and spontaneous pore size and shape adaptation to optimize an ensemble of weak noncovalent interactions, the structurally responsive metal-organic framework CdIF-13 (sod-Cd(benzimidazolate)2) exhibits inverse selectivity for propane over propylene with record-setting separation performance under industrially relevant temperature, pressure, and mixture conditions. Powder synchrotron X-ray diffraction measurements combined with first-principles calculations yield atomic-scale insight and reveal the induced fit mechanism of adsorbate-specific pore adaptation and ensemble interactions between ligands and adsorbates. Dynamic column breakthrough measurements confirm that CdIF-13 displays selectivity under mixed-component conditions of varying ratios, with a record measured selectivity factor of α ≈ 3 at 95:5 propylene:propane at 298 K and 1 bar. When sequenced with a low-cost rigid adsorbent, we demonstrated the direct purification of propylene under ambient conditions. This combined atomic-level structural characterization and performance testing firmly establishes how cooperatively flexible materials can be capable of unprecedented separation factors.

7.
Chem Commun (Camb) ; 59(58): 8977-8980, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37387311

RESUMO

Novel cobalt calixarene-capped and zirconium-based porous coordination cages were prepared with alkyne and azide functionality to leverage post-synthetic modification by click chemistry. While the calixarene-capped cages showed impressive stability when exposed to the most straightforward copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) reaction conditions with copper(II) sulfate and sodium ascorbate as the reducing agent, milder reaction conditions were necessary to perform analogous CuAAC reactions on zirconium-based cages. Reaction kinetics were monitored by IR spectroscopy, confirming rapid reaction times (<3 hours).

8.
ACS Cent Sci ; 9(4): 777-786, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122461

RESUMO

Materials that simultaneously exhibit permanent porosity and high-temperature magnetic order could lead to advances in fundamental physics and numerous emerging technologies. Herein, we show that the archetypal molecule-based magnet and magnonic material V(TCNE)2 (TCNE = tetracyanoethylene) can be desolvated to generate a room-temperature microporous magnet. The solution-phase reaction of V(CO)6 with TCNE yields V(TCNE)2·0.95CH2Cl2, for which a characteristic temperature of T* = 646 K is estimated from a Bloch fit to variable-temperature magnetization data. Removal of the solvent under reduced pressure affords the activated compound V(TCNE)2, which exhibits a T* value of 590 K and permanent microporosity (Langmuir surface area of 850 m2/g). The porous structure of V(TCNE)2 is accessible to the small gas molecules H2, N2, O2, CO2, ethane, and ethylene. While V(TCNE)2 exhibits thermally activated electron transfer with O2, all the other studied gases engage in physisorption. The T* value of V(TCNE)2 is slightly modulated upon adsorption of H2 (T* = 583 K) or CO2 (T* = 596 K), while it decreases more significantly upon ethylene insertion (T* = 459 K). These results provide an initial demonstration of microporosity in a room-temperature magnet and highlight the possibility of further incorporation of small-molecule guests, potentially even molecular qubits, toward future applications.

9.
Small ; 19(30): e2207507, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37052509

RESUMO

The preparation of a new class of reactive porous solids, prepared via straightforward salt metathesis reactions, is described here. Reaction of the dimethylammonium salt of a magnesium-based porous coordination cage with the chloride salt of [CrII Cl(Me4 cyclam)]+ affords a porous solid with concomitant removal of dimethylammonium chloride. The salt consists of the ions combined in the expected ratio based on their charge as confirmed by UV-vis and X-ray photoelectron spectroscopies, ion chromatography (IC), and inductively coupled plasma mass spectrometry (ICP-MS). The porous salt boasts a Brunauer-Emmett-Teller (BET) surface area of 213 m2  g-1 . Single crystal X-ray diffraction reveals the chromium(II) cations in the structure reside in the interstitial space between porous cages. Importantly, the chromium(II) centers, previously shown to react with O2 to afford reactive chromium(III)-superoxide adducts, are still accessible in the solid state as confirmed by UV-vis spectroscopy. The site-isolated reactive centers have competence toward hydrogen atom abstraction chemistry and display significantly increased stability and reactivity as compared to dissolved ions.

10.
J Nanobiotechnology ; 21(1): 39, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737783

RESUMO

The adoption of pulmonary vaccines to advantageously provide superior local mucosal protection against aerosolized pathogens has been faced with numerous logistical and practical challenges. One of these persistent challenges is the lack of effective vaccine adjuvants that could be well tolerated through the inhaled route of administration. Despite its widespread use as a vaccine adjuvant, aluminum salts (alum) are not well tolerated in the lung. To address this issue, we evaluated the use of porous aluminum (Al)-based metal-organic framework (MOF) nanoparticles (NPs) as inhalable adjuvants. We evaluate a suite of Al-based MOF NPs alongside alum including DUT-4, DUT-5, MIL-53 (Al), and MIL-101-NH2 (Al). As synthesized, MOF NPs ranged between ~ 200 nm and 1 µm in diameter, with the larger diameter MOFs matching those of commercial alum. In vitro examination of co-stimulatory markers revealed that the Al-based MOF NPs activated antigen presenting cells more effectively than alum. Similar results were found during in vivo immunizations utilizing ovalbumin (OVA) as a model antigen, resulting in robust mucosal humoral responses for all Al MOFs tested. In particular, DUT-5 was able to elicit mucosal OVA-specific IgA antibodies that were significantly higher than the other MOFs or alum dosed at the same NP mass. DUT-5 also was uniquely able to generate detectable IgG2a titers, indicative of a cellular immune response and also had superior performance relative to alum at equivalent Al dosed in a reduced dosage vaccination study. All MOF NPs tested were generally well-tolerated in the lung, with only acute levels of cellular infiltrates detected and no Al accumulation; Al content was largely cleared from the lung and other organs at 28 days despite the two-dose regime. Furthermore, all MOF NPs exhibited mass median aerodynamic diameters (MMADs) of ~ 1.5-2.5 µm when dispersed from a generic dry powder inhaler, ideal for efficient lung deposition. While further work is needed, these results demonstrate the great potential for use of Al-based MOFs for pulmonary vaccination as novel inhalable adjuvants.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Alumínio , Adjuvantes de Vacinas , Adjuvantes Imunológicos/farmacologia , Pulmão
11.
Inorg Chem ; 61(50): 20288-20298, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36459671

RESUMO

The electronic structure of copper corroles has been a topic of debate and revision since the advent of corrole chemistry. The ground state of these compounds is best described as an antiferromagnetically coupled Cu(II) corrole radical cation. In coordinating solvents, these molecules become paramagnetic, and this is often accompanied by a color change. The underlying chemistry of these solvent-induced properties is currently unknown. Here, we show that a coordinating solvent, such as pyridine, induces a change in the ground spin state from an antiferromagnetically coupled Cu(II) corrole radical cation to a ferromagnetically coupled triplet. Over time, the triplet reacts to produce a species with spectral signatures that are characteristic of the one-electron-reduced Cu(II) corrole. These observations account for the solvent-induced paramagnetism and the associated color changes that have been observed for copper corroles in coordinating solvents.


Assuntos
Cobre , Porfirinas , Cobre/química , Solventes , Porfirinas/química , Elétrons
12.
Inorg Chem ; 61(11): 4609-4617, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35263080

RESUMO

Ligand functionalization has been thoroughly leveraged to alter the properties of paddlewheel-based coordination cages where, in the case of ligand-terminated cages, functional groups are positioned on the periphery of synthesized cages. While these groups can be used to optimize solubility, porosity, crystal packing, thermal stability toward desolvation, reactivity, or optical activity, optimization of multiple properties can be challenging given their interconnected nature. For example, installation of functional groups to increase the solubility of porous cages typically has the effect of decreasing their porosity and stability toward thermal activation. Here we show that mixed-ligand cages can potentially address these issues as the benefits of various functional groups can be combined into one mixed-ligand cage. We further show that although ligand exchange reactions can be employed to obtain mixed ligand copper(II)-based cages, direct synthesis of mixed-ligand products is necessary for molybdenum(II) paddlewheel-based cages as these substitutionally inert clusters are resistant to ligand exchange. We ultimately show that highly soluble, highly porous, and thermally stable cuboctahedral cages are isolable by this strategy.

13.
Chem Commun (Camb) ; 58(7): 957-960, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34951415

RESUMO

Metal-organic layers (MOLs) are of great interest in heterogeneous catalysis, particularly materials that can accommodate extraneous metal centres. Here, we demonstrate a two-step preorganisation/delamination synthetic strategy using CuI as a template to prepare Zr-based MOLs with accessible 'syn' bis-pyrazolyl chelating sites (named UAM-2·ns) that are poised for quantitative post-synthetic metalation with late transition metals.

14.
Chem Mater ; 34(24): 10823-10831, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36590703

RESUMO

Porous salts have recently emerged as a promising new class of ultratunable permanently microporous solids. These adsorbents, which were first reported as ionic solids based on porous cations and anions, can be isolated from a wide variety of charged, permanently porous coordination cages. A challenge in realizing the full tunability of such systems, however, lies in the fact that the majority of coordination cages for which surface areas have been reported are comprised of charge-balanced inorganic and organic building blocks that result in neutral cages. As such, most reported permanently porous coordination cages cannot be used as reagents in the synthesis of porous salts. Here, we show that the facile reaction of TBAX (TBA+ = tetra-n-butylammonium; X = F- and Cl-) with molybdenum paddlewheel-based coordination cages of the M4L4 and M24L24 lantern and cuboctahedra structure types, respectively, affords charged cages by virtue of coordination of halide anions to the internal and/or external metal sites on these structures, as confirmed by single-crystal X-ray diffraction, X-ray photoelectron spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. At a practical level, the TBAX/cage reactions, which are fully reversible upon isolation of the cage with the appropriate solvent, solubilize otherwise rigorously insoluble cages. This method significantly increases the solution processability of these highly porous solids. Toward the formation of new porous salts, halide binding also serves to incorporate charge on neutral cages and make them amenable to simple salt metathesis reactions to afford new porous salts based on anions and cations with intrinsic porosity. A combination of diffraction methods and a suite of spectroscopic tools confirms speciation of the isolated solids, which represent a new class of highly tunable porous salts. Ultimately, this work represents a roadmap for the preparation of new porous solids and showcases the utility and broad applicability of anion binding as a strategy for the synthesis of porous salts.

15.
J Am Chem Soc ; 143(37): 14956-14961, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34498853

RESUMO

A large library of novel porous salts based on charged coordination cages was synthesized via straightforward salt metathesis reactions. For these, solutions of salts of oppositely charged coordination cages are mixed to precipitate MOF-like permanently porous products where metal identity, pore size, ligand functional groups, and surface area are highly tunable. For most of these materials, the constituent cages combine in the ratios expected based on their charge. Additional studies focused on the rate of salt metathesis or reaction stoichiometry as variables to tune particle size or product composition, respectively. It is expected that the design principles outlined here will be widely applicable for the synthesis of new porous salts based on a variety of charged porous molecular precursors.

16.
ACS Cent Sci ; 7(8): 1427-1433, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34471686

RESUMO

The electrochemical synthesis of metal-organic frameworks (MOFs) has been widely explored but has involved indirect routes, including anodic dissolution of solid metal electrodes or the use of interfacial redox chemistry to generate base equivalents and drive MOF assembly. These methods are limited in scope, as the former relies on the use of an anode consisting of the metal ion to be incorporated into the MOF, and the latter relies on the compatibility of the metal/ligand solution with the probase that is subsequently oxidized or reduced. We report the facile, direct electrochemical syntheses of four iron-based MOFs via controlled potential oxidation of dissolved metal cations. Oxidation of Fe(II) at +0.75 V (vs Ag/Ag+) in a solution containing 2,6-lutidine and terephthalic acid affords highly crystalline Fe-MIL-101. Controlled potential electrolysis with carboxy-functionalized ITO affords Fe-MIL-101 grown directly on the surface of modified electrodes. The methods we report herein represent the first general routes that employ interfacial electrochemistry to alter the oxidation state of metal ions dissolved in solution to directly trigger MOF formation. The reported method is functional group tolerant and will be broadly applicable to the bulk synthesis or surface growth of a range of MOFs based on metal ions with accessible oxidation states.

17.
Chem Commun (Camb) ; 57(67): 8312-8315, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319317

RESUMO

Metal-organic frameworks (MOFs) of the MIL series of materials have been widely studied as a result of their high tunability and the diversity of structure types that exist for these typically M3+ containing frameworks. We explored the use of amide-functionalized ligands in the synthesis of Fe-MIL-101 as a means to tune the water stability and water vapor adsorption in this important class of frameworks. We further show that slow leaching of Fe from NdFeB magnets can afford MIL-101 or MIL-88 under various conditions where the phase of the framework is controlled by length of the carbon chains on amide substituents. NdFeB can also be used to prepare these materials at room temperature in the absence of additional metal salts.

18.
ACS Appl Mater Interfaces ; 13(44): 51925-51932, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34156822

RESUMO

When investigating the gas storage capacities of metal-organic frameworks, volumetric values are often reported based on crystallographic densities. Although it is widely accepted that Langmuir and BET surface areas of a given MOF can vary depending on the exact synthetic conditions used to prepare the materials, it is rare that deviations in density from the optimal crystallographic density are considered. The actual (apparent) densities of these materials are highly variable depending on the presence of defects, impurities, or multiple phases that arise during synthesis. The apparent density of specific samples, which represent an experimentally determined crystallographic density, can be measured with helium pycnometry where the skeletal density measured via pycnometry is easily converted to an apparent density. In the work reported here, apparent density was measured for 46 samples across a series of different structure types where experimentally measured density was consistently lower than crystallographic density, up to 30% in some cases. Subsequently, use of this technique allows for quantification of densities for those materials whose structures have not been crystallographically determined.

19.
Inorg Chem ; 60(10): 7044-7050, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33905236

RESUMO

The number of studies concerning the permanent porosity of molecular materials, especially porous organic cages (POCs) and porous coordination cages (PCCs), have increased substantially over the past decade. The work presented here outlines novel approaches to the preparation of porous molecular structures upon metalation of nonporous, amine-based organic cages. Reduction of the well-known CC3 and CC1 imine-based POCs affords nonporous, highly flexible amine cages. These materials can be endowed with significant levels of structural rigidity via post-synthetic metalation of their ethylenediamine-type binding pockets. The hybrid metal-organic cages accessed through this approach combine aspects of POC and PCC chemistry, with structures of this type providing a potentially promising new direction for the design and development of porous molecular materials with tunability in overall charge, metal cation, porosity, and solubility.

20.
Inorg Chem ; 60(8): 5607-5616, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33784080

RESUMO

Functionalization of permanently porous coordination cages has been used to tune phase, surface area, stability, and solubility in this promising class of adsorbents. For many cages, however, these properties are intricately tied together, and installation of functional groups, for example, to increase solubility often leads to a decrease in surface area. Calixarene-capped cages offer the advantage in that they are cluster-terminated cages whose solid-state packing, and thus surface area, is typically governed by the nature of the capping ligand rather than the bridging ligand. In this work we investigate the influence of ligand functionalization on two series of isoreticular Ni(II)- and Co(II)-based calixarene-capped cages. The two types of materials described are represented as octahedral and rectangular prismatic coordination cages and can be synthesized in a modular manner, allowing for the substitution of dicarboxylate bridging ligands and the introduction of functional groups in specific locations on the cage. We ultimately show that highly soluble cages can be obtained while still having access to high surface areas for many of the isolated phases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA