Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Membr Biol ; 247(8): 675-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24906870

RESUMO

In kidney nephron, parietal epithelial cells line the Bowman's capsule and function as a permeability barrier for the glomerular filtrate. Bowman's capsule cells with proximal tubule epithelial morphology have been found. However, the effects of tubular metaplasia in Bowman's capsule on kidney function remain poorly understood. Sodium-glucose cotransporter 2 (SGLT2) plays a major role in reabsorption of glucose in the kidney and is expressed on brush border membrane (BBM) of epithelial cells in the early segment of the proximal tubule. We hypothesized that SGLT2 is expressed in tubularized Bowman's capsule and used our novel antibody to test this hypothesis. Immunohistochemical analysis was performed with our SGLT2 antibody on C57BL/6 mouse kidney prone to have tubularized Bowman's capsules. Cell membrane was examined with periodic acid-Schiff (PAS) stain. The results showed that SGLT2 was localized on BBM of the proximal tubules in young and adult mice. Bowman's capsules were lined mostly with normal brush border-less parietal epithelial cells in young mice, while they were almost completely covered with proximal tubule-like cells in adult mice. Regardless of age, SGLT2 was expressed on BBM of the tubularized Bowman's capsule but did not co-localize with nephrin in the glomerulus. SGLT2-expressing tubular cells expanded from the urinary pole toward the vascular pole of the Bowman's capsule. This study identified the localization of SGLT2 in the Bowman's capsule. Bowman's capsules with tubular metaplasia may acquire roles in reabsorption of filtered glucose and sodium.


Assuntos
Cápsula Glomerular/metabolismo , Membrana Celular/metabolismo , Epitélio/metabolismo , Túbulos Renais Proximais/metabolismo , Rim/metabolismo , Microvilosidades/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Western Blotting , Cápsula Glomerular/citologia , Glucose/metabolismo , Técnicas Imunoenzimáticas , Rim/citologia , Túbulos Renais Proximais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Sódio/metabolismo
2.
Eur J Pharmacol ; 690(1-3): 77-83, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22766068

RESUMO

Selective inhibitors of sodium-glucose cotransporter 2 (SGLT2)-mediated reabsorption of glucose in the proximal tubule of the kidney are being developed for the treatment of diabetes. SGLT2 shares high degree of homology with SGLT3; however, very little is known about the expression and functional role of SGLT3 in the human kidney. Indeed, the SGLT2 inhibitors that are currently in clinical trials might affect the expression and/or the activity of SGLT3. Therefore, the present study examined the expression of SGLT3 mRNA and protein in human kidney and in a human proximal tubule HK-2 cell line. The results indicated that human SGLT3 (hSGLT3) message and protein are expressed both in vivo and in vitro. We also studied the activity of hSGLT3 protein following its over-expression in mammalian kidney-derived COS-7 cells and in HK-2 cells treated with the imino sugar deoxynojirimycin (DNJ), a potent agonist of hSGLT3. Over-expression of hSGLT3 in COS-7 cells increased intracellular sodium concentration by 3-fold without affecting glucose transport. Activation of hSGLT3 with DNJ (50µM) increased sodium uptake in HK-2 cells by 5.5 fold and this effect could be completely blocked with SGLT inhibitor phlorizin (50µM). These results suggest that SGLT3 is expressed in human proximal tubular cells where it serves as a novel sodium transporter. Up-regulation of the expression of SGLT3 in the proximal tubule in diabetic patients may contribute to the elevated sodium transport in this segment of the nephron that has been postulated to promote hyperfiltration and renal injury.


Assuntos
Regulação da Expressão Gênica , Rim/metabolismo , Proteínas de Transporte de Sódio-Glucose/genética , Proteínas de Transporte de Sódio-Glucose/metabolismo , Animais , Células COS , Chlorocebus aethiops , Humanos , Espaço Intracelular/metabolismo , Rim/citologia , Túbulos Renais Proximais/citologia , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo
3.
Diabetes Technol Ther ; 13(7): 743-51, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21510766

RESUMO

BACKGROUND: Diabetes may alter renal glucose reabsorption by sodium (Na(+))-dependent glucose transporters (SGLTs). Radiolabeled substrates are commonly used for in vitro measurements of SGLT activity in kidney cells. We optimized a method to measure glucose uptake using a fluorescent substrate, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG). METHODS: Uptake buffers for 2-NBDG were the same as for (14)C-labeled α-methyl-d-glucopyranoside ([(14)C]AMG). Cell lysis buffer was optimized for fluorescence of 2-NBDG and Hoechst DNA stain. Uptake was performed on cultures of primary mouse kidney cells (PMKCs), the LLC-PK(1) proximal tubule cell line, or COS-7 cells transiently overexpressing mouse SGLT1 or SGLT2 by incubating cells at 37°C in buffer containing 50-200 µM 2-NBDG. Microscopy was performed to visualize uptake in intact cells, while a fluorescence microplate reader was used to measure intracellular concentration of 2-NBDG ([2-NBDG](i)) in cell homogenates. RESULTS: Fluorescent cells were observed in cultures of PMKCs and LLC-PK(1) cells exposed to 2-NBDG in the presence or absence of Na(+). In LLC-PK(1) cells, 2-NBDG transport in the presence of Na(+) had a maximum rate of 0.05 nmol/min/µg of DNA. In these cells, Na(+)-independent uptake of 2-NBDG was blocked with the GLUT inhibitor, cytochalasin B. The Na(+)-dependent uptake of 2-NBDG decreased in response to co-exposure to the SGLT substrate, AMG, and it could be blocked with the SGLT inhibitor, phlorizin. Immunocytochemistry showed overexpression of SGLT1 and SGLT2 in COS-7 cells, in which, in the presence of Na(+), [2-NBDG](i) was fivefold higher than in controls. CONCLUSION: Glucose transport in cultured kidney cells can be measured with the fluorescence method described in this study.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Desoxiglucose/análogos & derivados , Corantes Fluorescentes/farmacocinética , Glucose/metabolismo , Rim/metabolismo , 4-Cloro-7-nitrobenzofurazano/farmacocinética , Animais , Transporte Biológico/efeitos dos fármacos , Células COS , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Citocalasina B/farmacologia , Desoxiglucose/farmacocinética , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Rim/ultraestrutura , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/ultraestrutura , Metilglucosídeos/farmacologia , Camundongos , Microscopia de Fluorescência , Florizina/farmacologia , Sódio/metabolismo , Transportador 1 de Glucose-Sódio/antagonistas & inibidores , Transportador 1 de Glucose-Sódio/genética , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose , Espectrometria de Fluorescência
4.
Toxicol Appl Pharmacol ; 244(3): 254-62, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20060848

RESUMO

Cadmium (Cd) exposure causes glucosuria (glucose in the urine). Previously, it was shown that Cd exposure of primary cultures of mouse kidney cells (PMKC) decreased mRNA levels of the glucose transporters, SGLT1 and SGLT2 and that Sp1 from Cd-exposed cells displayed reduced binding to the GC boxes of the mouse SGLT1 promoter in vitro. Here, we identified a GC box upstream of mouse SGLT2 gene. ChIP assays on PMKC revealed that exposure to 5 microM Cd abolished Sp1 binding to SGLT1 GC box while it decreased Sp1 binding to SGLT2 GC sequence by 30% in vivo. The in vitro DNA binding assay, EMSA, demonstrated that binding of Sp1 from Cd (7.5 microM)-treated PMKC to the SGLT2 GC probe was 86% lower than in untreated cells. Sp1 is a zinc finger protein. Compared to PMKC exposed to 5 microM Cd alone, inclusion of 5 microM Zn restored SGLT1 and 2 mRNA levels by 15% and 30%, respectively. Cd (10 microM) decreased the binding of recombinant Sp1 (rhSp1) to SGLT1 and SGLT2 GC probes to 12% and 8% of untreated controls. Cd exerted no effect on GC-bound rhSp1. Co-treatment with Cd and Zn showed that added Zn significantly restored rhSp1 binding to the SGLT1 and SGLT2. Addition of Zn post Cd treatment was not stimulatory. We conclude that Cd can replace Zn in Sp1 DNA binding domain to reduce its binding to GC sites in mouse SGLT1 and SGLT2 promoters.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Rim/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Transportador 1 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/genética , Fator de Transcrição Sp1/efeitos dos fármacos , Animais , Sequência de Bases , Sítios de Ligação/efeitos dos fármacos , Cádmio/química , Cádmio/metabolismo , Células Cultivadas , Regulação para Baixo/genética , Poluentes Ambientais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transportador 1 de Glucose-Sódio/metabolismo , Transportador 2 de Glucose-Sódio/metabolismo , Fator de Transcrição Sp1/antagonistas & inibidores , Fator de Transcrição Sp1/metabolismo , Zinco/química , Dedos de Zinco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA