Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 31(15): 3365-3373.e7, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129827

RESUMO

During primary growth, plant tissues increase their length, and as these tissues mature, they initiate secondary growth to increase thickness.1 It is not known what activates this transition to secondary growth. Cytokinins are key plant hormones regulating vascular development during both primary and secondary growth. During primary growth of Arabidopsis roots, cytokinins promote procambial cell proliferation2,3 and vascular patterning together with the hormone auxin.4-7 In the absence of cytokinins, secondary growth fails to initiate.8 Enhanced cytokinin levels, in turn, promote secondary growth.8,9 Despite the importance of cytokinins, little is known about the downstream signaling events in this process. Here, we show that cytokinins and a few downstream LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family of transcription factors are rate-limiting components in activating and further promoting secondary growth in Arabidopsis roots. Cytokinins directly activate transcription of two homologous LBD genes, LBD3 and LBD4. Two other homologous LBDs, LBD1 and LBD11, are induced only after prolonged cytokinin treatment. Our genetic studies revealed a two-stage mechanism downstream of cytokinin signaling: while LBD3 and LBD4 regulate activation of secondary growth, LBD1, LBD3, LBD4, and LBD11 together promote further radial growth and maintenance of cambial stem cells. LBD overexpression promoted rapid cell growth followed by accelerated cell divisions, thus leading to enhanced secondary growth. Finally, we show that LBDs rapidly inhibit cytokinin signaling. Together, our data suggest that the cambium-promoting LBDs negatively feed back into cytokinin signaling to keep root secondary growth in balance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas/fisiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
2.
Plant Cell Environ ; 44(2): 548-558, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33131061

RESUMO

In Arabidopsis, two leaf-type ferredoxin-NADP+ oxidoreductase (LFNR) isoforms function in photosynthetic electron flow in reduction of NADP+ , while two root-type FNR (RFNR) isoforms catalyse reduction of ferredoxin in non-photosynthetic plastids. As the key to understanding, the function of RFNRs might lie in their spatial and temporal distribution in different plant tissues and cell types, we examined expression of RFNR1 and RFNR2 genes using ß-glucuronidase (GUS) reporter lines and investigated accumulation of distinct RFNR isoforms using a GFP approach and Western blotting upon various stresses. We show that while RFNR1 promoter is active in leaf veins, root tips and in the stele of roots, RFNR2 promoter activity is present in leaf tips and root stele, epidermis and cortex. RFNR1 protein accumulates as a soluble protein within the plastids of root stele cells, while RFNR2 is mainly present in the outer root layers. Ozone treatment of plants enhanced accumulation of RFNR1, whereas low temperature treatment specifically affected RFNR2 accumulation in roots. We further discuss the physiological roles of RFNR1 and RFNR2 based on characterization of rfnr1 and rfnr2 knock-out plants and show that although the function of these proteins is partly redundant, the RFNR proteins are essential for plant development and survival.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Ferredoxina-NADP Redutase/metabolismo , Oxirredutases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Transporte de Elétrons , Ferredoxina-NADP Redutase/genética , Oxirredutases/metabolismo , Fotossíntese , Folhas de Planta/enzimologia , Folhas de Planta/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plastídeos/enzimologia , Isoformas de Proteínas , Estresse Fisiológico
3.
Curr Biol ; 30(15): R880-R883, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32750348

RESUMO

Embedded within plant stems and roots, the radially dividing cambium controls organ thickening. A study of radish root transcriptomes finds that multiple cambial gene regulatory networks are conserved between radish and the model species Arabidopsis. These results highlight the close relationship between root thickening and environmental responses.


Assuntos
Arabidopsis , Câmbio , Arabidopsis/genética , Biologia , Redes Reguladoras de Genes , Transcriptoma
5.
Nature ; 565(7740): 485-489, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626967

RESUMO

Wood, a type of xylem tissue, originates from cell proliferation of the vascular cambium. Xylem is produced inside, and phloem outside, of the cambium1. Morphogenesis in plants is typically coordinated by organizer cells that direct the adjacent stem cells to undergo programmed cell division and differentiation. The location of the vascular cambium stem cells and whether the organizer concept applies to the cambium are currently unknown2. Here, using lineage-tracing and molecular genetic studies in the roots of Arabidopsis thaliana, we show that cells with a xylem identity direct adjacent vascular cambial cells to divide and function as stem cells. Thus, these xylem-identity cells constitute an organizer. A local maximum of the phytohormone auxin, and consequent expression of CLASS III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) transcription factors, promotes xylem identity and cellular quiescence of the organizer cells. Additionally, the organizer maintains phloem identity in a non-cell-autonomous fashion. Consistent with this dual function of the organizer cells, xylem and phloem originate from a single, bifacial stem cell in each radial cell file, which confirms the classical theory of a uniseriate vascular cambium3. Clones that display high levels of ectopically activated auxin signalling differentiate as xylem vessels; these clones induce cell divisions and the expression of cambial and phloem markers in the adjacent cells, which suggests that a local auxin-signalling maximum is sufficient to specify a stem-cell organizer. Although vascular cambium has a unique function among plant meristems, the stem-cell organizer of this tissue shares features with the organizers of root and shoot meristems.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Câmbio/citologia , Câmbio/metabolismo , Ácidos Indolacéticos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Meristema/citologia , Meristema/metabolismo , Floema/citologia , Floema/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Xilema/citologia , Xilema/metabolismo
6.
Nat Genet ; 49(6): 904-912, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28481341

RESUMO

Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.


Assuntos
Betula/genética , Genoma de Planta , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Adaptação Biológica/genética , Betula/fisiologia , Finlândia , Duplicação Gênica , Genética Populacional , Filogenia , Densidade Demográfica
7.
PLoS Comput Biol ; 11(10): e1004450, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26505899

RESUMO

An auxin maximum is positioned along the xylem axis of the Arabidopsis root tip. The pattern depends on mutual feedback between auxin and cytokinins mediated by the PIN class of auxin efflux transporters and AHP6, an inhibitor of cytokinin signalling. This interaction has been proposed to regulate the size and the position of the hormones' respective signalling domains and specify distinct boundaries between them. To understand the dynamics of this regulatory network, we implemented a parsimonious computational model of auxin transport that considers hormonal regulation of the auxin transporters within a spatial context, explicitly taking into account cell shape and polarity and the presence of cell walls. Our analysis reveals that an informative spatial pattern in cytokinin levels generated by diffusion is a theoretically unlikely scenario. Furthermore, our model shows that such a pattern is not required for correct and robust auxin patterning. Instead, auxin-dependent modifications of cytokinin response, rather than variations in cytokinin levels, allow for the necessary feedbacks, which can amplify and stabilise the auxin maximum. Our simulations demonstrate the importance of hormonal regulation of auxin efflux for pattern robustness. While involvement of the PIN proteins in vascular patterning is well established, we predict and experimentally verify a role of AUX1 and LAX1/2 auxin influx transporters in this process. Furthermore, we show that polar localisation of PIN1 generates an auxin flux circuit that not only stabilises the accumulation of auxin within the xylem axis, but also provides a mechanism for auxin to accumulate specifically in the xylem-pole pericycle cells, an important early step in lateral root initiation. The model also revealed that pericycle cells on opposite xylem poles compete for auxin accumulation, consistent with the observation that lateral roots are not initiated opposite to each other.


Assuntos
Arabidopsis/fisiologia , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Raízes de Plantas/crescimento & desenvolvimento , Feixe Vascular de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Simulação por Computador , Proteínas de Membrana Transportadoras , Reguladores de Crescimento de Plantas/metabolismo
8.
Biol Open ; 4(10): 1229-36, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26340943

RESUMO

Higher plant vasculature is characterized by two distinct developmental phases. Initially, a well-defined radial primary pattern is established. In eudicots, this is followed by secondary growth, which involves development of the cambium and is required for efficient water and nutrient transport and wood formation. Regulation of secondary growth involves several phytohormones, and cytokinins have been implicated as key players, particularly in the activation of cell proliferation, but the molecular mechanisms mediating this hormonal control remain unknown. Here we show that the genes encoding the transcription factor AINTEGUMENTA (ANT) and the D-type cyclin CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both required for proper root secondary thickening. Cytokinin regulation of ANT and CYCD3 also occurs during secondary thickening of poplar stems, suggesting this represents a conserved regulatory mechanism.

9.
Arabidopsis Book ; 13: e0177, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26078728

RESUMO

Secondary phloem and xylem tissues are produced through the activity of vascular cambium, the cylindrical secondary meristem which arises among the primary plant tissues. Most dicotyledonous species undergo secondary development, among them Arabidopsis. Despite its small size and herbaceous nature, Arabidopsis displays prominent secondary growth in several organs, including the root, hypocotyl and shoot. Together with the vast genetic resources and molecular research methods available for it, this has made Arabidopsis a versatile and accessible model organism for studying cambial development and wood formation. In this review, we discuss and compare the development and function of the vascular cambium in the Arabidopsis root, hypocotyl, and shoot. We describe the current understanding of the molecular regulation of vascular cambium and compare it to the function of primary meristems. We conclude with a look at the future prospects of cambium research, including opportunities provided by phenotyping and modelling approaches, complemented by studies of natural variation and comparative genetic studies in perennial and woody plant species.

10.
PLoS Genet ; 10(2): e1004112, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24550736

RESUMO

Plant responses to changes in environmental conditions are mediated by a network of signaling events leading to downstream responses, including changes in gene expression and activation of cell death programs. Arabidopsis thaliana RADICAL-INDUCED CELL DEATH1 (RCD1) has been proposed to regulate plant stress responses by protein-protein interactions with transcription factors. Furthermore, the rcd1 mutant has defective control of cell death in response to apoplastic reactive oxygen species (ROS). Combining transcriptomic and functional genomics approaches we first used microarray analysis in a time series to study changes in gene expression after apoplastic ROS treatment in rcd1. To identify a core set of cell death regulated genes, RCD1-regulated genes were clustered together with other array experiments from plants undergoing cell death or treated with various pathogens, plant hormones or other chemicals. Subsequently, selected rcd1 double mutants were constructed to further define the genetic requirements for the execution of apoplastic ROS induced cell death. Through the genetic analysis we identified WRKY70 and SGT1b as cell death regulators functioning downstream of RCD1 and show that quantitative rather than qualitative differences in gene expression related to cell death appeared to better explain the outcome. Allocation of plant energy to defenses diverts resources from growth. Recently, a plant response termed stress-induced morphogenic response (SIMR) was proposed to regulate the balance between defense and growth. Using a rcd1 double mutant collection we show that SIMR is mostly independent of the classical plant defense signaling pathways and that the redox balance is involved in development of SIMR.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Morte Celular/genética , Proteínas Nucleares/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Proteínas Nucleares/metabolismo , Estresse Fisiológico/genética
11.
Plant Physiol ; 157(4): 1866-83, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22007024

RESUMO

Reactive oxygen species (ROS) are ubiquitous signaling molecules in plant stress and development. To gain further insight into the plant transcriptional response to apoplastic ROS, the phytotoxic atmospheric pollutant ozone was used as a model ROS inducer in Arabidopsis (Arabidopsis thaliana) and gene expression was analyzed with microarrays. In contrast to the increase in signaling via the stress hormones salicylic acid, abscisic acid, jasmonic acid (JA), and ethylene, ROS treatment caused auxin signaling to be transiently suppressed, which was confirmed with a DR5-uidA auxin reporter construct. Transcriptomic data revealed that various aspects of auxin homeostasis and signaling were modified by apoplastic ROS. Furthermore, a detailed analysis of auxin signaling showed that transcripts of several auxin receptors and Auxin/Indole-3-Acetic Acid (Aux/IAA) transcriptional repressors were reduced in response to apoplastic ROS. The ROS-derived changes in the expression of auxin signaling genes partially overlapped with abiotic stress, pathogen responses, and salicylic acid signaling. Several mechanisms known to suppress auxin signaling during biotic stress were excluded, indicating that ROS regulated auxin responses via a novel mechanism. Using mutants defective in various auxin (axr1, nit1, aux1, tir1 afb2, iaa28-1, iaa28-2) and JA (axr1, coi1-16) responses, ROS-induced cell death was found to be regulated by JA but not by auxin. Chronic ROS treatment resulted in altered leaf morphology, a stress response known as "stress-induced morphogenic response." Altered leaf shape of tir1 afb2 suggests that auxin was a negative regulator of stress-induced morphogenic response in the rosette.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ozônio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Análise por Conglomerados , Perfilação da Expressão Gênica , Genes de Plantas/genética , Homeostase , Ácidos Indolacéticos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo , Regiões Promotoras Genéticas/genética , RNA de Plantas/genética , Fatores de Tempo , Transcriptoma
12.
BMC Genomics ; 11: 170, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20226034

RESUMO

BACKGROUND: The SROs (SIMILAR TO RCD-ONE) are a group of plant-specific proteins which have important functions in stress adaptation and development. They contain the catalytic core of the poly(ADP-ribose) polymerase (PARP) domain and a C-terminal RST (RCD-SRO-TAF4) domain. In addition to these domains, several, but not all, SROs contain an N-terminal WWE domain. RESULTS: SROs are present in all analyzed land plants and sequence analysis differentiates between two structurally distinct groups; cryptogams and monocots possess only group I SROs whereas eudicots also contain group II. Group I SROs possess an N-terminal WWE domain (PS50918) but the WWE domain is lacking in group II SROs. Group I domain structure is widely represented in organisms as distant as humans (for example, HsPARP11). We propose a unified nomenclature for the SRO family. The SROs are able to interact with transcription factors through the C-terminal RST domain but themselves are generally not regulated at the transcriptional level. The most conserved feature of the SROs is the catalytic core of the poly(ADP-ribose) polymerase (PS51059) domain. However, bioinformatic analysis of the SRO PARP domain fold-structure and biochemical assays of AtRCD1 suggested that SROs do not possess ADP-ribosyl transferase activity. CONCLUSIONS: The SROs are a highly conserved family of plant specific proteins. Sequence analysis of the RST domain implicates a highly preserved protein structure in that region. This might have implications for functional conservation. We suggest that, despite the presence of the catalytic core of the PARP domain, the SROs do not possess ADP-ribosyl transferase activity. Nevertheless, the function of SROs is critical for plants and might be related to transcription factor regulation and complex formation.


Assuntos
Proteínas de Plantas/genética , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Arabidopsis/genética , Sequência Conservada , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Família Multigênica , Filogenia , Poli(ADP-Ribose) Polimerases/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
13.
Plant J ; 60(2): 268-79, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19548978

RESUMO

RADICAL-INDUCED CELL DEATH1 (RCD1) is an important regulator of stress and hormonal and developmental responses in Arabidopsis thaliana. Together with its closest homolog, SIMILAR TO RCD-ONE1 (SRO1), it is the only Arabidopsis protein containing the WWE domain, which is known to mediate protein-protein interactions in other organisms. Additionally, these two proteins contain the core catalytic region of poly-ADP-ribose transferases and a conserved C-terminal domain. Tissue and subcellular localization data indicate that RCD1 and SRO1 have partially overlapping functions in plant development. In contrast mutant data indicate that rcd1 has defects in plant development, whereas sro1 displays normal development. However, the rcd1 sro1 double mutant has severe growth defects, indicating that RCD1 and SRO1 exemplify an important genetic principle - unequal genetic redundancy. A large pair-wise interaction test against the REGIA transcription factor collection revealed that RCD1 interacts with a large number of transcription factors belonging to several protein families, such as AP2/ERF, NAC and basic helix-loop-helix (bHLH), and that SRO1 interacts with a smaller subset of these. Full genome array analysis indicated that in many cases targets of these transcription factors have altered expression in the rcd1 but not the sro1 mutant. Taken together RCD1 and SRO1 are required for proper plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , RNA de Plantas/genética , Alinhamento de Sequência , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA