Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 13(1): 393, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097555

RESUMO

Peripheral blood metabolomics was used to gain chemical insight into the biology of treatment-refractory Major Depressive Disorder with suicidal ideation, and to identify individualized differences for personalized care. The study cohort consisted of 99 patients with treatment-refractory major depressive disorder and suicidal ideation (trMDD-SI n = 52 females and 47 males) and 94 age- and sex-matched healthy controls (n = 48 females and 46 males). The median age was 29 years (IQR 22-42). Targeted, broad-spectrum metabolomics measured 448 metabolites. Fibroblast growth factor 21 (FGF21) and growth differentiation factor 15 (GDF15) were measured as biomarkers of mitochondrial dysfunction. The diagnostic accuracy of plasma metabolomics was over 90% (95%CI: 0.80-1.0) by area under the receiver operator characteristic (AUROC) curve analysis. Over 55% of the metabolic impact in males and 75% in females came from abnormalities in lipids. Modified purines and pyrimidines from tRNA, rRNA, and mRNA turnover were increased in the trMDD-SI group. FGF21 was increased in both males and females. Increased lactate, glutamate, and saccharopine, and decreased cystine provided evidence of reductive stress. Seventy-five percent of the metabolomic abnormalities found were individualized. Personalized deficiencies in CoQ10, flavin adenine dinucleotide (FAD), citrulline, lutein, carnitine, or folate were found. Pathways regulated by mitochondrial function dominated the metabolic signature. Peripheral blood metabolomics identified mitochondrial dysfunction and reductive stress as common denominators in suicidal ideation associated with treatment-refractory major depressive disorder. Individualized metabolic differences were found that may help with personalized management.


Assuntos
Transtorno Depressivo Maior , Doenças Mitocondriais , Masculino , Feminino , Humanos , Adulto , Ideação Suicida , Transtorno Depressivo Maior/diagnóstico , Luteína , Biomarcadores
2.
J Inherit Metab Dis ; 45(3): 529-540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218577

RESUMO

Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is an autosomal recessive disease resulting from mutations in the ACADVL gene and is among the disorders tested for in newborn screening (NBS). Confirmatory sequencing following suspected VLCADD NBS results often identifies variants of uncertain significance (VUS) in the ACADVL gene, leading to uncertainty of diagnosis and providing effective treatment regimen. Currently, ACADVL has >300 VUSs in the ClinVar database that requiring characterization to determine potential pathogenicity. In this study, CRISPR/Cas9 genome editing was used to knock out ACADVL in HEK293T cells, and targeted deletion was confirmed by droplet digital polymerase chain reaction (PCR). No VLCAD protein was detected and an 84% decrease in enzyme activity using the electron transfer flavoprotein fluorescence reduction assay and C21-CoA as substrate was observed compared to control. Plasmids containing control or variant ACADVL coding sequence were transfected into the ACADVL null HEK293T. While transfection of control ACADVL restored VLCAD protein and enzyme activity, cells expressing the VLCAD Val283Ala mutant had 18% VLCAD enzyme activity and reduced protein compared to control. VLCAD Ile420Leu, Gly179Arg, and Gln406Pro produced protein comparable to control but 25%, 4%, and 5% VLCAD enzyme activity, respectively. Leu540Pro and Asp570_Ala572dup had reduced VLCAD protein and 10% and 3% VLCAD enzyme activity, respectively. VLCADD fibroblasts containing the same variations had decreased VLCAD protein and activity comparable to the transfection experiments. Generating ACADVL null HEK293T cell line allowed functional studies to determine pathogenicity of ACADVL exonic variants. This approach can be applied to multiple genes for other disorders identified through NBS.


Assuntos
Erros Inatos do Metabolismo Lipídico , Doenças Mitocondriais , Doenças Musculares , Acil-CoA Desidrogenase de Cadeia Longa/genética , Síndrome Congênita de Insuficiência da Medula Óssea , Células HEK293 , Humanos , Imidazóis , Recém-Nascido , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/terapia , Doenças Mitocondriais/genética , Doenças Musculares/diagnóstico , Triagem Neonatal , Sulfonamidas , Tiofenos
3.
PLoS One ; 15(12): e0242445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301490

RESUMO

Acyl-CoA dehydrogenase 10 (Acad10)-deficient mice develop impaired glucose tolerance, peripheral insulin resistance, and abnormal weight gain. In addition, they exhibit biochemical features of deficiencies of fatty acid oxidation, such as accumulation of metabolites consistent with abnormal mitochondrial energy metabolism and fasting induced rhabdomyolysis. ACAD10 has significant expression in mouse brain, unlike other acyl-CoA dehydrogenases (ACADs) involved in fatty acid oxidation. The presence of ACAD10 in human tissues was determined using immunohistochemical staining. To characterize the effect of ACAD10 deficiency on the brain, micro-MRI and neurobehavioral evaluations were performed. Acad10-deficient mouse behavior was examined using open field testing and DigiGait analysis for changes in general activity as well as indices of gait, respectively. ACAD10 protein was shown to colocalize to mitochondria and peroxisomes in lung, muscle, kidney, and pancreas human tissue. Acad10-deficient mice demonstrated subtle behavioral abnormalities, which included reduced activity and increased time in the arena perimeter in the open field test. Mutant animals exhibited brake and propulsion metrics similar to those of control animals, which indicates normal balance, stability of gait, and the absence of significant motor impairment. The lack of evidence for motor impairment combined with avoidance of the center of an open field arena and reduced vertical and horizontal exploration are consistent with a phenotype characterized by elevated anxiety. These results implicate ACAD10 function in normal mouse behavior, which suggests a novel role for ACAD10 in brain metabolism.


Assuntos
Acil-CoA Desidrogenase/genética , Ansiedade/genética , Encéfalo/enzimologia , Metabolismo Energético/genética , Mitocôndrias/enzimologia , Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase/metabolismo , Animais , Ansiedade/enzimologia , Ansiedade/fisiopatologia , Comportamento Animal , Encéfalo/diagnóstico por imagem , Carnitina/análogos & derivados , Carnitina/metabolismo , Marcha/fisiologia , Humanos , Rim/enzimologia , Fígado/enzimologia , Pulmão/enzimologia , Imageamento por Ressonância Magnética , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Músculo Esquelético/enzimologia , Pâncreas/enzimologia , Peroxissomos/enzimologia
4.
J Inherit Metab Dis ; 41(1): 49-57, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28120165

RESUMO

The Native American Pima population has the highest incidence of insulin resistance (IR) and type 2 diabetes mellitus (T2DM) of any reported population, but the pathophysiologic mechanism is unknown. Genetic studies in Pima Indians have linked acyl-CoA dehydrogenase 10 (ACAD10) gene polymorphisms, among others, to this predisposition. The gene codes for a protein with a C-terminus region that is structurally similar to members of a family of flavoenzymes-the acyl-CoA dehydrogenases (ACADs)-that catalyze α,ß-dehydrogenation reactions, including the first step in mitochondrial FAO (FAO), and intermediary reactions in amino acids catabolism. Dysregulation of FAO and an increase in plasma acylcarnitines are recognized as important in the pathophysiology of IR and T2DM. To investigate the deficiency of ACAD10 as a monogenic risk factor for T2DM in human, an Acad-deficient mouse was generated and characterized. The deficient mice exhibit an abnormal glucose tolerance test and elevated insulin levels. Blood acylcarnitine analysis shows an increase in long-chain species in the older mice. Nonspecific variable pattern of elevated short-terminal branch-chain acylcarnitines in a variety of tissues was also observed. Acad10 mice accumulate excess abdominal adipose tissue, develop an early inflammatory liver process, exhibit fasting rhabdomyolysis, and have abnormal skeletal muscle mitochondria. Our results identify Acad10 as a genetic determinant of T2DM in mice and provide a model to further investigate genetic determinants for insulin resistance in humans.


Assuntos
Acil-CoA Desidrogenase/genética , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina , Erros Inatos do Metabolismo Lipídico/enzimologia , Gordura Abdominal/enzimologia , Gordura Abdominal/fisiopatologia , Adiposidade , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Predisposição Genética para Doença , Insulina/sangue , Resistência à Insulina/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/patologia , Erros Inatos do Metabolismo Lipídico/fisiopatologia , Fígado/enzimologia , Fígado/patologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/enzimologia , Mitocôndrias Musculares/patologia , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade Abdominal/enzimologia , Obesidade Abdominal/genética , Obesidade Abdominal/fisiopatologia , Fenótipo , Rabdomiólise/enzimologia , Rabdomiólise/genética , Rabdomiólise/patologia
5.
JIMD Rep ; 30: 33-37, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26920905

RESUMO

Mitochondrial short-chain enoyl-CoA hydratase deficiency (ECHS1D) is caused by mutations in ECHS1 (OMIM 602292) and is a recently identified inborn error of valine and fatty acid metabolism. This defect leads to secondary mitochondrial dysfunction. The majority of previously reported patients had the Leigh syndrome, with a median life expectancy of approximately 2 years. We report two siblings born 3 years apart with prenatal findings including facial dysmorphia, oligohydramnios, intrauterine growth restriction, and premature delivery. They had severe lactic acidosis with onset within the first hours of life, had congenital dilated cardiomyopathy, and died at 16 h of life and 2 days of life, respectively.Biochemical evaluation of these patients showed elevated butyryl-carnitine in the blood and elevated methylmalonyl/succinyl-CoA and decreased hydroxybutyryl-CoA in frozen liver of patient 2, confirming abnormal short-chain fatty acid metabolism. Elevated butyryl-carnitine has been reported only in a single previous case of ECHS1 deficiency, which also had neonatal onset. Pyruvate and lactate levels were both elevated with a normal pyruvate-lactate ratio. This supports the previous hypothesis that lactic acidosis in these patients results from secondary inhibition of the pyruvate dehydrogenase complex. The biomarker 2,3-dihydroxy-2-methylbutyric acid was detected in patient 2, but at lower levels than in previously reported cases.These cases extend our understanding of the severe end of the phenotypic spectrum of ECHS1 deficiency, clarify the range of biochemical abnormalities associated with this new disorder, and highlight the need to suspect this disease in patients presenting with comparable metabolic derangements and dysmorphic features.

6.
J Appl Lab Med ; 1(3): 271-279, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33626836

RESUMO

BACKGROUND: Measurement of amino acids in dried blood spots has been extensively used for the detection of newborns with various inborn errors of amino acid metabolism including phenylketonuria (PKU) and maple syrup urine disease (MSUD). Whereas blood spot amino acid measurement has been invaluable for initial diagnosis, the relative insensitivity of blood spot measurement has found limited use in lifelong monitoring of patients with these disorders. The work described here outlines the evaluation of blood spot amino acid analysis using ultra-performance liquid chromatography (UPLC©) for use in follow-up testing. METHODS: Dried blood spot amino acids were derivatized with a proprietary AccQTag® reagent and separated using UPLC. Plasma amino acids from dried bloods spots were obtained from 318 patient samples and compared to corresponding plasma samples measured using the same UPLC method. RESULTS: Dried blood spot amino acid concentrations were highly correlated but negatively biased vs plasma concentrations. Interassay imprecision studies using UPLC demonstrated a %CV for phenylalanine of 4.81%-16.07%, tyrosine 5.62%-20.16%, valine 4.23%-15.46%, leucine 8.3%-15.3%, and isoleucine 4.25%-16.80%. Intraassay imprecision studies using UPLC demonstrated a %CV for phenylalanine of 0.42%-3.4%, tyrosine 1.6%-7.85%, valine 0.14%-1.84%, leucine 0.28%-2.01%, and isoleucine 0.6%-2.65%. Blood spot amino acid concentrations were stable for at least 3 days at temperatures up to 65 °C. CONCLUSIONS: This UPLC-based method can reliably measure clinically significant amino acids in dried blood spots.

7.
Orphanet J Rare Dis ; 10: 79, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26081110

RESUMO

BACKGROUND: Short-chain enoyl-CoA hydratase (SCEH, encoded by ECHS1) catalyzes hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acyl-CoAs. SCEH has a broad substrate specificity and is believed to play an important role in mitochondrial fatty acid oxidation and in the metabolism of branched-chain amino acids. Recently, the first patients with SCEH deficiency have been reported revealing only a defect in valine catabolism. We investigated the role of SCEH in fatty acid and branched-chain amino acid metabolism in four newly identified patients. In addition, because of the Leigh-like presentation, we studied enzymes involved in bioenergetics. METHODS: Metabolite, enzymatic, protein and genetic analyses were performed in four patients, including two siblings. Palmitate loading studies in fibroblasts were performed to study mitochondrial ß-oxidation. In addition, enoyl-CoA hydratase activity was measured with crotonyl-CoA, methacrylyl-CoA, tiglyl-CoA and 3-methylcrotonyl-CoA both in fibroblasts and liver to further study the role of SCEH in different metabolic pathways. Analyses of pyruvate dehydrogenase and respiratory chain complexes were performed in multiple tissues of two patients. RESULTS: All patients were either homozygous or compound heterozygous for mutations in the ECHS1 gene, had markedly reduced SCEH enzymatic activity and protein level in fibroblasts. All patients presented with lactic acidosis. The first two patients presented with vacuolating leukoencephalopathy and basal ganglia abnormalities. The third patient showed a slow neurodegenerative condition with global brain atrophy and the fourth patient showed Leigh-like lesions with a single episode of metabolic acidosis. Clinical picture and metabolite analysis were not consistent with a mitochondrial fatty acid oxidation disorder, which was supported by the normal palmitate loading test in fibroblasts. Patient fibroblasts displayed deficient hydratase activity with different substrates tested. Pyruvate dehydrogenase activity was markedly reduced in particular in muscle from the most severely affected patients, which was caused by reduced expression of E2 protein, whereas E2 mRNA was increased. CONCLUSIONS: Despite its activity towards substrates from different metabolic pathways, SCEH appears to be only crucial in valine metabolism, but not in isoleucine metabolism, and only of limited importance for mitochondrial fatty acid oxidation. In severely affected patients SCEH deficiency can cause a secondary pyruvate dehydrogenase deficiency contributing to the clinical presentation.


Assuntos
Acil Coenzima A/genética , Acil Coenzima A/deficiência , Criança , Enoil-CoA Hidratase/genética , Feminino , Heterozigoto , Humanos , Lactente , Recém-Nascido , Doença de Leigh/diagnóstico , Doença de Leigh/etiologia , Doença de Leigh/genética , Masculino , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA