RESUMO
The mechanistic target of rapamycin is an essential regulator of T cell metabolism and differentiation. In this study, we demonstrate that serum- and glucocorticoid-regulated kinase 1 (SGK1), a downstream node of mechanistic target of rapamycin complex 2 signaling, represses memory CD8+ T cell differentiation. During acute infections, murine SGK1-deficient CD8+ T cells adopt an early memory precursor phenotype leading to more long-lived memory T cells. Thus, SGK1-deficient CD8+ T cells demonstrate an enhanced recall capacity in response to reinfection and can readily reject tumors. Mechanistically, activation of SGK1-deficient CD8+ T cells results in decreased Foxo1 phosphorylation and increased nuclear translocation of Foxo1 to promote early memory development. Overall, SGK1 might prove to be a powerful target for enhancing the efficacy of vaccines and tumor immunotherapy.
Assuntos
Linfócitos T CD8-Positivos , Alvo Mecanístico do Complexo 2 de Rapamicina , Células T de Memória , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Diferenciação Celular , Memória Imunológica/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismoRESUMO
Human gut microbial species found to associate with clinical responses to immune checkpoint inhibitors (ICIs) are often tested in mice using fecal microbiota transfer (FMT), wherein tumor responses in recipient mice may recapitulate human responses to ICI treatment. However, many FMT studies have reported only limited methodological description, details of murine cohorts, and statistical methods. To investigate the reproducibility and robustness of gut microbial species that impact ICI responses, we performed human to germ-free mouse FMT using fecal samples from patients with non-small cell lung cancer who had a pathological response or nonresponse after neoadjuvant ICI treatment. R-FMT mice yielded greater anti-tumor responses in combination with anti-PD-L1 treatment compared to NR-FMT, although the magnitude varied depending on mouse cell line, sex, and individual experiment. Detailed investigation of post-FMT mouse microbiota using 16S rRNA amplicon sequencing, with models to classify and correct for biological variables, revealed a shared presence of the most highly abundant taxa between the human inocula and mice, though low abundance human taxa colonized mice more variably after FMT. Multiple Clostridium species also correlated with tumor outcome in individual anti-PD-L1-treated R-FMT mice. RNAseq analysis revealed differential expression of T and NK cell-related pathways in responding tumors, irrespective of FMT source, with enrichment of these cell types confirmed by immunohistochemistry. This study identifies several human gut microbial species that may play a role in clinical responses to ICIs and suggests attention to biological variables is needed to improve reproducibility and limit variability across experimental murine cohorts.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Transplante de Microbiota Fecal , Humanos , Camundongos , Terapia Neoadjuvante , RNA Ribossômico 16S/genética , Reprodutibilidade dos TestesRESUMO
B cells are an adaptive immune target of biomaterials development in vaccine research but, despite their role in wound healing, have not been extensively studied in regenerative medicine. To probe the role of B cells in biomaterial scaffold response, we evaluated the B cell response to biomaterial materials implanted in a muscle wound using a biological extracellular matrix (ECM), as a reference for a naturally derived material, and synthetic polyester polycaprolactone (PCL), as a reference for a synthetic material. In the local muscle tissue, small numbers of B cells are present in response to tissue injury and biomaterial implantation. The ECM materials induced mature B cells in lymph nodes and antigen presentation in the spleen. The synthetic PCL implants resulted in prolonged B cell presence in the wound and induced an antigen-presenting phenotype. In summary, the adaptive B cell immune response to biomaterial induces local, regional, and systemic immunological changes.
RESUMO
Renal Cell Carcinoma (RCC) is one of the most commonly diagnosed cancers worldwide with research efforts dramatically improving understanding of the biology of the disease. To investigate the role of the immune system in treatment-naïve clear cell Renal Cell Carcinoma (ccRCC), we interrogated the immune infiltrate in patient-matched ccRCC tumor samples, benign normal adjacent tissue (NAT) and peripheral blood mononuclear cells (PBMCs isolated from whole blood, focusing our attention on the myeloid cell infiltrate. Using flow cytometric, MS, and ExCYT analysis, we discovered unique myeloid populations in PBMCs across patient samples. Furthermore, normal adjacent tissues and ccRCC tissues contained numerous myeloid populations with a unique signature for both tissues. Enrichment of the immune cell (CD45+) fraction and subsequent gene expression analysis revealed a number of myeloid-related genes that were differentially expressed. These data provide evidence, for the first time, of an immunosuppressive and pro-tumorigenic role of myeloid cells in early, clinically localized ccRCC. The identification of a number of immune proteins for therapeutic targeting provides a rationale for investigation into the potential efficacy of earlier intervention with single-agent or combination immunotherapy for ccRCC.
Assuntos
Biomarcadores Tumorais/sangue , Carcinoma de Células Renais/metabolismo , Imunoterapia/métodos , Neoplasias Renais/metabolismo , Antígenos Comuns de Leucócito/sangue , Leucócitos Mononucleares/metabolismo , Microambiente Tumoral/imunologia , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/imunologia , Genômica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Leucócitos Mononucleares/citologia , Espectrometria de Massas , Prognóstico , Transdução de Sinais , Espectrometria de Massas em TandemRESUMO
PURPOSE: Clinical trials with immune checkpoint inhibition in sarcomas have demonstrated minimal response. Here, we interrogated the tumor microenvironment (TME) of two contrasting soft-tissue sarcomas (STS), rhabdomyosarcomas and undifferentiated pleomorphic sarcomas (UPS), with differing genetic underpinnings and responses to immune checkpoint inhibition to understand the mechanisms that lead to response. EXPERIMENTAL DESIGN: Utilizing fresh and formalin-fixed, paraffin-embedded tissue from patients diagnosed with UPS and rhabdomyosarcomas, we dissected the TME by using IHC, flow cytometry, and comparative transcriptomic studies. RESULTS: Our results demonstrated both STS subtypes to be dominated by tumor-associated macrophages and infiltrated with immune cells that localized near the tumor vasculature. Both subtypes had similar T-cell densities, however, their in situ distribution diverged. UPS specimens demonstrated diffuse intratumoral infiltration of T cells, while rhabdomyosarcomas samples revealed intratumoral T cells that clustered with B cells near perivascular beds, forming tertiary lymphoid structures (TLS). T cells in UPS specimens were comprised of abundant CD8+ T cells exhibiting high PD-1 expression, which might represent the tumor reactive repertoire. In rhabdomyosarcomas, T cells were limited to TLS, but expressed immune checkpoints and immunomodulatory molecules which, if appropriately targeted, could help unleash T cells into the rest of the tumor tissue. CONCLUSIONS: Our work in STS revealed an immunosuppressive TME dominated by myeloid cells, which may be overcome with activation of T cells that traffic into the tumor. In rhabdomyosarcomas, targeting T cells found within TLS may be key to achieve antitumor response.
Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Complexas Mistas/imunologia , Rabdomiossarcoma/imunologia , Estruturas Linfoides Terciárias/imunologia , Macrófagos Associados a Tumor/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Criança , Pré-Escolar , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos do Interstício Tumoral/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias Complexas Mistas/tratamento farmacológico , Neoplasias Complexas Mistas/genética , Neoplasias Complexas Mistas/patologia , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Estruturas Linfoides Terciárias/patologia , Evasão Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Adulto JovemRESUMO
Myeloid cells comprise a major component of the tumor microenvironment (TME) that promotes tumor growth and immune evasion. By employing a small-molecule inhibitor of glutamine metabolism, not only were we able to inhibit tumor growth, but we markedly inhibited the generation and recruitment of myeloid-derived suppressor cells (MDSCs). Targeting tumor glutamine metabolism led to a decrease in CSF3 and hence recruitment of MDSCs as well as immunogenic cell death, leading to an increase in inflammatory tumor-associated macrophages (TAMs). Alternatively, inhibiting glutamine metabolism of the MDSCs themselves led to activation-induced cell death and conversion of MDSCs to inflammatory macrophages. Surprisingly, blocking glutamine metabolism also inhibited IDO expression of both the tumor and myeloid-derived cells, leading to a marked decrease in kynurenine levels. This in turn inhibited the development of metastasis and further enhanced antitumor immunity. Indeed, targeting glutamine metabolism rendered checkpoint blockade-resistant tumors susceptible to immunotherapy. Overall, our studies define an intimate interplay between the unique metabolism of tumors and the metabolism of suppressive immune cells.
Assuntos
Imunidade Celular , Macrófagos/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Experimentais/imunologia , Microambiente Tumoral/imunologia , Animais , Feminino , Glutamina/imunologia , Imunoterapia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Supressoras Mieloides/patologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapiaRESUMO
PURPOSE: Neoadjuvant PD-1 blockade is a promising treatment for resectable non-small cell lung cancer (NSCLC), yet immunologic mechanisms contributing to tumor regression and biomarkers of response are unknown. Using paired tumor/blood samples from a phase II clinical trial (NCT02259621), we explored whether the peripheral T-cell clonotypic dynamics can serve as a biomarker for response to neoadjuvant PD-1 blockade. EXPERIMENTAL DESIGN: T-cell receptor (TCR) sequencing was performed on serial peripheral blood, tumor, and normal lung samples from resectable NSCLC patients treated with neoadjuvant PD-1 blockade. We explored the temporal dynamics of the T-cell repertoire in the peripheral and tumoral compartments in response to neoadjuvant PD-1 blockade by using the TCR as a molecular barcode. RESULTS: Higher intratumoral TCR clonality was associated with reduced percent residual tumor at the time of surgery, and the TCR repertoire of tumors with major pathologic response (MPR; <10% residual tumor after neoadjuvant therapy) had a higher clonality and greater sharing of tumor-infiltrating clonotypes with the peripheral blood relative to tumors without MPR. Additionally, the posttreatment tumor bed of patients with MPR was enriched with T-cell clones that had peripherally expanded between weeks 2 and 4 after anti-PD-1 initiation and the intratumoral space occupied by these clonotypes was inversely correlated with percent residual tumor. CONCLUSIONS: Our study suggests that exchange of T-cell clones between tumor and blood represents a key correlate of pathologic response to neoadjuvant immunotherapy and shows that the periphery may be a previously underappreciated originating compartment for effective antitumor immunity.See related commentary by Henick, p. 1205.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Terapia Neoadjuvante , Receptor de Morte Celular Programada 1 , Linfócitos TRESUMO
The metabolic characteristics of tumors present considerable hurdles to immune cell function and cancer immunotherapy. Using a glutamine antagonist, we metabolically dismantled the immunosuppressive microenvironment of tumors. We demonstrate that glutamine blockade in tumor-bearing mice suppresses oxidative and glycolytic metabolism of cancer cells, leading to decreased hypoxia, acidosis, and nutrient depletion. By contrast, effector T cells responded to glutamine antagonism by markedly up-regulating oxidative metabolism and adopting a long-lived, highly activated phenotype. These divergent changes in cellular metabolism and programming form the basis for potent antitumor responses. Glutamine antagonism therefore exposes a previously undefined difference in metabolic plasticity between cancer cells and effector T cells that can be exploited as a "metabolic checkpoint" for tumor immunotherapy.
Assuntos
Compostos Azo/farmacologia , Caproatos/farmacologia , Glutamina/metabolismo , Imunoterapia Adotiva , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Evasão Tumoral , Animais , Linfócitos T CD8-Positivos/imunologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metabolismo Energético , Feminino , Glucose/metabolismo , Glutamina/antagonistas & inibidores , Memória Imunológica , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Microambiente TumoralRESUMO
The mechanistic/mammalian target of rapamycin (mTOR) has emerged as a critical integrator of signals from the immune microenvironment capable of regulating T cell activation, differentiation, and function. The precise role of mTOR in the control of regulatory T cell (Treg) differentiation and function is complex. Pharmacologic inhibition and genetic deletion of mTOR promotes the generation of Tregs even under conditions that would normally promote generation of effector T cells. Alternatively, mTOR activity has been observed to be increased in Tregs, and the genetic deletion of the mTOR complex 1 (mTORC1)-scaffold protein Raptor inhibits Treg function. In this study, by employing both pharmacologic inhibitors and genetically altered T cells, we seek to clarify the role of mTOR in Tregs. Our studies demonstrate that inhibition of mTOR during T cell activation promotes the generation of long-lived central Tregs with a memory-like phenotype in mice. Metabolically, these central memory Tregs possess enhanced spare respiratory capacity, similar to CD8+ memory cells. Alternatively, the generation of effector Tregs (eTregs) requires mTOR function. Indeed, genetic deletion of Rptor leads to the decreased expression of ICOS and PD-1 on the eTregs. Overall, our studies define a subset of mTORC1hi eTregs and mTORC1lo central Tregs.
Assuntos
Fatores de Transcrição Forkhead/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Feminino , Memória Imunológica/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Proteína Regulatória Associada a mTOR/imunologiaRESUMO
The asymmetric partitioning of fate-determining proteins has been shown to contribute to the generation of CD8(+) effector and memory T cell precursors. Here we demonstrate the asymmetric partitioning of mTORC1 activity after the activation of naive CD8(+) T cells. This results in the generation of two daughter T cells, one of which shows increased mTORC1 activity, increased glycolytic activity and increased expression of effector molecules. The other daughter T cell has relatively low mTORC1 activity and increased lipid metabolism, expresses increased amounts of anti-apoptotic molecules and subsequently displays enhanced long-term survival. Mechanistically, we demonstrate a link between T cell antigen receptor (TCR)-induced asymmetric expression of amino acid transporters and RagC-mediated translocation of mTOR to the lysosomes. Overall, our data provide important insight into how mTORC1-mediated metabolic reprogramming affects the fate decisions of T cells.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Divisão Celular/imunologia , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Células Precursoras de Linfócitos T/imunologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Feminino , Glicólise , Memória Imunológica , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transporte Proteico , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de SinaisRESUMO
Mutant epitopes encoded by cancer genes are virtually always located in the interior of cells, making them invisible to conventional antibodies. We here describe an approach to identify single-chain variable fragments (scFvs) specific for mutant peptides presented on the cell surface by HLA molecules. We demonstrate that these scFvs can be successfully converted to full-length antibodies, termed MANAbodies, targeting "Mutation-Associated Neo-Antigens" bound to HLA. A phage display library representing a highly diverse array of single-chain variable fragment sequences was first designed and constructed. A competitive selection protocol was then used to identify clones specific for mutant peptides bound to predefined HLA types. In this way, we obtained two scFvs, one specific for a peptide encoded by a common KRAS mutant and the other by a common epidermal growth factor receptor (EGFR) mutant. The scFvs bound to these peptides only when the peptides were complexed with HLA-A2 (KRAS peptide) or HLA-A3 (EGFR peptide). We converted one scFv to a full-length antibody (MANAbody) and demonstrate that the MANAbody specifically reacts with mutant peptide-HLA complex even when the peptide differs by only one amino acid from the normal, WT form.
Assuntos
Epitopos/genética , Epitopos/imunologia , Antígenos HLA/genética , Antígenos HLA/imunologia , Mutação/genética , Anticorpos de Cadeia Única/imunologia , Membrana Celular/metabolismo , Técnicas de Visualização da Superfície Celular , Células Clonais , Humanos , Proteínas Mutantes/metabolismo , Peptídeos/metabolismoRESUMO
UNLABELLED: We examined the immune microenvironment of primary colorectal cancer using immunohistochemistry, laser capture microdissection/qRT-PCR, flow cytometry, and functional analysis of tumor-infiltrating lymphocytes. A subset of colorectal cancer displayed high infiltration with activated CD8(+) cytotoxic T lymphocyte (CTL) as well as activated Th1 cells characterized by IFNγ production and the Th1 transcription factor TBET. Parallel analysis of tumor genotypes revealed that virtually all of the tumors with this active Th1/CTL microenvironment had defects in mismatch repair, as evidenced by microsatellite instability (MSI). Counterbalancing this active Th1/CTL microenvironment, MSI tumors selectively demonstrated highly upregulated expression of multiple immune checkpoints, including five-PD-1, PD-L1, CTLA-4, LAG-3, and IDO-currently being targeted clinically with inhibitors. These findings link tumor genotype with the immune microenvironment, and explain why MSI tumors are not naturally eliminated despite a hostile Th1/CTL microenvironment. They further suggest that blockade of specific checkpoints may be selectively efficacious in the MSI subset of colorectal cancer. SIGNIFICANCE: The findings reported in this article are the first to demonstrate a link between a genetically defined subtype of cancer and its corresponding expression of immune checkpoints in the tumor microenvironment. The mismatch repair-defective subset of colorectal cancer selectively upregulates at least five checkpoint molecules that are targets of inhibitors currently being clinically tested.
Assuntos
Pontos de Checagem do Ciclo Celular , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Instabilidade de Microssatélites , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Neoplasias do Colo/patologia , Humanos , Imuno-Histoquímica , Imunofenotipagem , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Fenótipo , Células Estromais/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismoRESUMO
Impressive responses have been observed in patients treated with checkpoint inhibitory anti-programmed cell death-1 (PD-1) or anti-cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) antibodies. However, immunotherapy against poorly immunogenic cancers remains a challenge. Here we report that treatment with both anti-PD-1 and anti-CTLA-4 antibodies was unable to eradicate large, modestly immunogenic CT26 tumors or metastatic 4T1 tumors. Cotreatment with epigenetic-modulating drugs and checkpoint inhibitors markedly improved treatment outcomes, curing more than 80% of the tumor-bearing mice. Functional studies revealed that the primary targets of the epigenetic modulators were myeloid-derived suppressor cells (MDSCs). A PI3K inhibitor that reduced circulating MDSCs also eradicated 4T1 tumors in 80% of the mice when combined with immune checkpoint inhibitors. Thus, cancers resistant to immune checkpoint blockade can be cured by eliminating MDSCs.
Assuntos
Imunoterapia/métodos , Células Mieloides/imunologia , Metástase Neoplásica/imunologia , Metástase Neoplásica/terapia , Animais , Anticorpos Monoclonais/administração & dosagem , Azacitidina/administração & dosagem , Benzamidas/administração & dosagem , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/secundário , Neoplasias Colorretais/terapia , Terapia Combinada , Epigênese Genética/efeitos dos fármacos , Feminino , Inibidores de Histona Desacetilases/administração & dosagem , Humanos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/secundário , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Células Mieloides/efeitos dos fármacos , Metástase Neoplásica/genética , Inibidores de Fosfoinositídeo-3 Quinase , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Piridinas/administração & dosagemRESUMO
Myeloid-derived suppressor cells (MDSC) play a key immunosuppressive role in various types of cancer, including head and neck squamous cell carcinoma (HNSCC). In this study, we characterized CD14+HLA-DR(-/lo) cells sorted from the tumors, draining lymph nodes, and peripheral blood of HNSCC patients. CD14+HLA-DR(-/lo) cells were phenotyped as CD11b+, CD33+, CD34+, arginase-I+, and ROS+. In all 3 compartments, they suppressed autologous, antigen-independent T cell proliferation in a differential manner. The abundance of MDSC correlated with stage, but did not correlate with previous treatment with radiation or subsites of HNSCC. Interestingly, MDSC from all 3 compartments showed high phosphorylated STAT3 levels that correlated with arginase-I expression levels and activity. Stattic, a STAT3-specific inhibitor, and STAT3-targeted siRNA abrogated MDSC's suppressive function. Inhibition of STAT3 signaling also resulted in decreased arginase-I activity. Analysis of the human arginase-I promoter region showed multiple STAT3-binding elements, and ChIP demonstrated that phosphorylated STAT3 binds to multiple sites in the arginase-I promoter. Finally, rescue of arginase-I activity after STAT3 blockade restored MDSC's suppressive function. Taken together, these results demonstrate that the suppressive function of arginase-I in both infiltrating and circulating MDSC is a downstream target of activated STAT3.