Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 204: 108125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705353

RESUMO

In La Réunion, the established honeybee subspecies Apis mellifera unicolor, an endemic subspecies of African lineage, is facing considerable challenges. Since the introduction of the Varroa destructor mite in 2017 high colony losses have been recorded. We investigated the dynamics of V. destructor and two viruses, the Deformed Wing Virus (DWV), known to be transmitted by the mite, and the Chronic Bee Paralysis Virus (CBPV), in A. m. unicolor. Colonies from two apiaries located at 300 and 900 m a.s.l were monitored twice for one year without any acaricide treatment. The brood area, V. destructor infestation rates, DWV and CBPV prevalence and load were recorded monthly. A. m. unicolor maintained brood rearing throughout the year. Varroa destructor infestation resulted in high colony mortality (up to 85 %) and high phoretic mite rates (up to 52 mites per hundred bees). The establishment of DWV in colonies occurred after that of V. destructor and the mite infestation rate had a significant effect on the virus prevalence and load. CBPV appeared only transiently throughout the surveys. The data showed that, in tropical colonies with permanent brood rearing, V. destructor and DWV can reach high levels, but are still subject to seasonal variations that appear to be influenced by environmental conditions. This suggests that beekeeping practices could be adapted by favouring sites and periods for transhumance or acaricide treatment.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas/virologia , Abelhas/parasitologia , Varroidae/virologia , Varroidae/fisiologia , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia , Vírus de Insetos , Espécies Introduzidas , Interações Hospedeiro-Parasita , Ilhas , Dicistroviridae/fisiologia
2.
Microorganisms ; 12(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38258019

RESUMO

The honey bee Apis mellifera is exposed to a variety of biotic and abiotic stressors, such as the highly prevalent microsporidian parasite Nosema (Vairimorpha) ceranae and neonicotinoid insecticides. Both can affect honey bee physiology and microbial gut communities, eventually reducing its lifespan. They can also have a combined effect on the insect's survival. The use of bacterial probiotics has been proposed to improve honey bee health, but their beneficial effect remains an open question. In the present study, western honey bees were experimentally infected with N. ceranae spores, chronically exposed to the neonicotinoid thiamethoxam, and/or supplied daily with the homofermentative bacterium Pediococcus acidilactici MA18/5M thought to improve the honey bees' tolerance to the parasite. Deep shotgun metagenomic sequencing allowed the response of the gut microbiota to be investigated with a taxonomic resolution at the species level. All treatments induced significant changes in honey bee gut bacterial communities. Nosema ceranae infection increased the abundance of Proteus mirabilis, Frischella perrara, and Gilliamella apicola and reduced the abundance of Bifidobacterium asteroides, Fructobacillus fructosus, and Lactobacillus spp. Supplementation with P. acidilactici overturned some of these alterations, bringing back the abundance of some altered species close to the relative abundance found in the controls. Surprisingly, the exposure to thiamethoxam also restored the relative abundance of some species modulated by N. ceranae. This study shows that stressors and probiotics may have an antagonistic impact on honey bee gut bacterial communities and that P. acidilactici may have a protective effect against the dysbiosis induced by an infection with N. ceranae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA