Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Control Hosp Epidemiol ; 43(12): 1790-1795, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34903308

RESUMO

BACKGROUND: Healthcare workers (HCWs) not adhering to physical distancing recommendations is a risk factor for acquisition of severe acute respiratory coronavirus virus 2 (SARS-CoV-2). The study objective was to assess the impact of interventions to improve HCW physical distancing on actual distance between HCWs in a real-life setting. METHODS: HCWs voluntarily wore proximity beacons to measure the number and intensity of physical distancing interactions between each other in a pediatric intensive care unit. We compared interactions before and after implementing a bundle of interventions including changes to the layout of workstations, cognitive aids, and individual feedback from wearable proximity beacons. RESULTS: Overall, we recorded 10,788 interactions within 6 feet (∼2 m) and lasting >5 seconds. The number of HCWs wearing beacons fluctuated daily and increased over the study period. On average, 13 beacons were worn daily (32% of possible staff; range, 2-32 per day). We recorded 3,218 interactions before the interventions and 7,570 interactions after the interventions began. Using regression analysis accounting for the maximum number of potential interactions if all staff had worn beacons on a given day, there was a 1% decline in the number of interactions per possible interactions in the postintervention period (incident rate ratio, 0.99; 95% confidence interval, 0.98-1.00; P = .02) with fewer interactions occurring at nursing stations, in workrooms and during morning rounds. CONCLUSIONS: Using quantitative data from wearable proximity beacons, we found an overall small decline in interactions within 6 feet between HCWs in a busy intensive care unit after a multifaceted bundle of interventions was implemented to improve physical distancing.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Humanos , Distanciamento Físico , COVID-19/prevenção & controle , Pessoal de Saúde , Unidades de Terapia Intensiva Pediátrica
2.
JAMIA Open ; 4(4): ooab095, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34926997

RESUMO

OBJECTIVE: Despite the importance of physical distancing in reducing SARS-CoV-2 transmission, this practice is challenging in healthcare. We piloted use of wearable proximity beacons among healthcare workers (HCWs) in an inpatient unit to highlight considerations for future use of trackable technologies in healthcare settings. MATERIALS AND METHODS: We performed a feasibility pilot study in a non-COVID adult medical unit from September 28 to October 28, 2020. HCWs wore wearable proximity beacons, and interactions defined as <6 feet for ≥5 s were recorded. Validation was performed using direct observations. RESULTS: A total of 6172 close proximity interactions were recorded, and with the removal of 2033 false-positive interactions, 4139 remained. The highest proportion of interactions occurred between 7:00 Am-9:00 Am. Direct observations of HCWs substantiated these findings. DISCUSSION: This pilot study showed that wearable beacons can be used to monitor and quantify HCW interactions in inpatient settings. CONCLUSION: Technology can be used to track HCW physical distancing.

3.
Wound Repair Regen ; 29(5): 766-776, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991156

RESUMO

Common treatment for venous leg wounds includes topical wound dressings with compression. At each dressing change, wounds are debrided and washed; however, the effect of the washing procedure on the wound microbiome has not been studied. We hypothesized that wound washing may alter the wound microbiome. To characterize microbiome changes with respect to wound washing, swabs from 11 patients with chronic wounds were sampled before and after washing, and patient microbiomes were characterized using 16S rRNA sequencing and culturing. Microbiomes across patient samples prior to washing were typically polymicrobial but varied in the number and type of bacterial genera present. Proteus and Pseudomonas were the dominant genera in the study. We found that washing does not consistently change microbiome diversity but does cause consistent changes in microbiome composition. Specifically, washing caused a decrease in the relative abundance of the most highly represented genera in each patient cluster. The finding that venous leg ulcer wound washing, a standard of care therapy, can induce changes in the wound microbiome is novel and could be potentially informative for future guided therapy strategies.


Assuntos
Microbiota , Úlcera Varicosa , Bandagens , Humanos , RNA Ribossômico 16S/genética , Úlcera Varicosa/terapia , Cicatrização
4.
Microbiome ; 9(1): 22, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482907

RESUMO

BACKGROUND: Skin, the largest organ of the human body by weight, hosts a diversity of microorganisms that can influence health. The microbial residents of the skin are now appreciated for their roles in host immune interactions, wound healing, colonization resistance, and various skin disorders. Still, much remains to be discovered in terms of the host pathways influenced by skin microorganisms, as well as the higher-level skin properties impacted through these microbe-host interactions. Towards this direction, recent efforts using mouse models point to pronounced changes in the transcriptional profiles of the skin in response to the presence of a microbial community. However, there is a need to quantify the roles of microorganisms at both the individual and community-level in healthy human skin. In this study, we utilize human skin equivalents to study the effects of individual taxa and a microbial community in a precisely controlled context. Through transcriptomics analysis, we identify key genes and pathways influenced by skin microbes, and we also characterize higher-level impacts on skin processes and properties through histological analyses. RESULTS: The presence of a microbiome on a 3D skin tissue model led to significantly altered patterns of gene expression, influencing genes involved in the regulation of apoptosis, proliferation, and the extracellular matrix (among others). Moreover, microbiome treatment influenced the thickness of the epidermal layer, reduced the number of actively proliferating cells, and increased filaggrin expression. Many of these findings were evident upon treatment with the mixed community, but either not detected or less pronounced in treatments by single microorganisms, underscoring the impact that a diverse skin microbiome has on the host. CONCLUSIONS: This work contributes to the understanding of how microbiome constituents individually and collectively influence human skin processes and properties. The results show that, while it is important to understand the effect of individual microbes on the host, a full community of microbes has unique and pronounced effects on the skin. Thus, in its impacts on the host, the skin microbiome is more than the sum of its parts. Video abstract.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Pele/microbiologia , Proteínas Filagrinas , Perfilação da Expressão Gênica , Voluntários Saudáveis , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Microbiota/genética , Fenômenos Fisiológicos da Pele/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA