Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(4): e0013224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511932

RESUMO

Heartland virus (HRTV) is an emerging tick-borne bandavirus that causes a febrile illness of varying severity in humans, with cases reported in eastern and midwestern regions of the United States. No vaccines or approved therapies are available to prevent or treat HRTV disease. Here, we describe the genetic changes, natural history of disease, and pathogenesis of a mouse-adapted HRTV (MA-HRTV) that is uniformly lethal in 7- to 8-week-old AG129 mice at low challenge doses. We used this model to assess the efficacy of the ribonucleoside analog, 4'-fluorouridine (EIDD-2749), and showed that once-daily oral treatment with 3 mg/kg of drug, initiated after the onset of disease, protects mice against lethal MA-HRTV challenge and reduces viral loads in blood and tissues. Our findings provide insights into HRTV virulence and pathogenesis and support further development of EIDD-2749 as a therapeutic intervention for HRTV disease. IMPORTANCE: More than 60 cases of HRTV disease spanning 14 states have been reported to the United States Centers for Disease Control and Prevention. The expanding range of the Lone Star tick that transmits HRTV, the growing population of at-risk persons living in geographic areas where the tick is abundant, and the lack of antiviral treatments or vaccines raise significant public health concerns. Here, we report the development of a new small-animal model of lethal HRTV disease to gain insight into HRTV pathogenesis and the application of this model for the preclinical development of a promising new antiviral drug candidate, EIDD-2749. Our findings shed light on how the virus causes disease and support the continued development of EIDD-2749 as a therapeutic for severe cases of HRTV infection.


Assuntos
Infecções por Bunyaviridae , Bunyaviridae , Nucleotídeos de Uracila , Animais , Humanos , Camundongos , Infecções por Bunyaviridae/tratamento farmacológico , Carrapatos , Estados Unidos , Nucleotídeos de Uracila/uso terapêutico
2.
Antiviral Res ; 209: 105453, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379378

RESUMO

The unprecedented magnitude of the 2013-2016 Ebola virus (EBOV) epidemic in West Africa resulted in over 11 000 deaths and spurred an international public health emergency. A second outbreak in 2018-2020 in DRC resulted in an additional >3400 cases and nearly 2300 deaths (WHO, 2020). These large outbreaks across geographically diverse regions highlight the need for the development of effective oral therapeutic agents that can be easily distributed for self-administration to populations with active disease or at risk of infection. Herein, we report the in vivo efficacy of N4-hydroxycytidine (EIDD-1931), a broadly active ribonucleoside analog and the active metabolite of the prodrug EIDD-2801 (molnupiravir), in murine models of lethal EBOV infection. Twice daily oral dosing with EIDD-1931 at 200 mg/kg for 7 days, initiated either with a prophylactic dose 2 h before infection, or as therapeutic treatment starting 6 h post-infection, resulted in 92-100% survival of mice challenged with lethal doses of EBOV, reduced clinical signs of Ebola virus disease (EVD), reduced serum virus titers, and facilitated weight loss recovery. These results support further investigation of molnupiravir as a potential therapeutic or prophylactic treatment for EVD.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Ribonucleosídeos , Animais , Camundongos , Doença pelo Vírus Ebola/tratamento farmacológico , Doença pelo Vírus Ebola/prevenção & controle , Antivirais/farmacologia , Antivirais/uso terapêutico , Ribonucleosídeos/farmacologia
3.
Science ; 375(6577): 161-167, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-34855509

RESUMO

The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and older adults. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with high selectivity index in cells and human airway epithelia organoids. Polymerase inhibition within in vitro RNA-dependent RNA polymerase assays established for RSV and SARS-CoV-2 revealed transcriptional stalling after incorporation. Once-daily oral treatment was highly efficacious at 5 milligrams per kilogram (mg/kg) in RSV-infected mice or 20 mg/kg in ferrets infected with different SARS-CoV-2 variants of concern, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2, and related RNA virus infections.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Nucleotídeos de Uracila/farmacologia , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/metabolismo , COVID-19/virologia , Linhagem Celular , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Modelos Animais de Doenças , Feminino , Furões , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mononegavirais/efeitos dos fármacos , Mononegavirais/fisiologia , RNA Polimerase Dependente de RNA/metabolismo , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Transcrição Gênica , Nucleotídeos de Uracila/administração & dosagem , Nucleotídeos de Uracila/metabolismo , Replicação Viral/efeitos dos fármacos
4.
bioRxiv ; 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34031658

RESUMO

The COVID-19 pandemic has underscored the critical need for broad-spectrum therapeutics against respiratory viruses. Respiratory syncytial virus (RSV) is a major threat to pediatric patients and the elderly. We describe 4'-fluorouridine (4'-FlU, EIDD-2749), a ribonucleoside analog that inhibits RSV, related RNA viruses, and SARS-CoV-2 with high selectivity index in cells and well-differentiated human airway epithelia. Polymerase inhibition in in vitro RdRP assays established for RSV and SARS-CoV-2 revealed transcriptional pauses at positions i or i +3/4 post-incorporation. Once-daily oral treatment was highly efficacious at 5 mg/kg in RSV-infected mice or 20 mg/kg in ferrets infected with SARS-CoV-2 WA1/2020 or variant-of-concern (VoC) isolate CA/2020, initiated 24 or 12 hours after infection, respectively. These properties define 4'-FlU as a broad-spectrum candidate for the treatment of RSV, SARS-CoV-2 and related RNA virus infections. ONE-SENTENCE SUMMARY: 4'-Fluorouridine is an orally available ribonucleoside analog that efficiently treats RSV and SARS-CoV-2 infections in vivo .

5.
Nature ; 591(7850): 451-457, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561864

RESUMO

All coronaviruses known to have recently emerged as human pathogens probably originated in bats1. Here we use a single experimental platform based on immunodeficient mice implanted with human lung tissue (hereafter, human lung-only mice (LoM)) to demonstrate the efficient in vivo replication of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as well as two endogenous SARS-like bat coronaviruses that show potential for emergence as human pathogens. Virus replication in this model occurs in bona fide human lung tissue and does not require any type of adaptation of the virus or the host. Our results indicate that bats contain endogenous coronaviruses that are capable of direct transmission to humans. Our detailed analysis of in vivo infection with SARS-CoV-2 in human lung tissue from LoM showed a predominant infection of human lung epithelial cells, including type-2 pneumocytes that are present in alveoli and ciliated airway cells. Acute infection with SARS-CoV-2 was highly cytopathic and induced a robust and sustained type-I interferon and inflammatory cytokine and chemokine response. Finally, we evaluated a therapeutic and pre-exposure prophylaxis strategy for SARS-CoV-2 infection. Our results show that therapeutic and prophylactic administration of EIDD-2801-an oral broad-spectrum antiviral agent that is currently in phase II/III clinical trials-markedly inhibited SARS-CoV-2 replication in vivo, and thus has considerable potential for the prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Citidina/análogos & derivados , Hidroxilaminas/administração & dosagem , Hidroxilaminas/uso terapêutico , Administração Oral , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , COVID-19/imunologia , Quimioprevenção , Quirópteros/virologia , Ensaios Clínicos Fase II como Assunto , Ensaios Clínicos Fase III como Assunto , Citidina/administração & dosagem , Citidina/uso terapêutico , Citocinas/imunologia , Células Epiteliais/virologia , Feminino , Xenoenxertos , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Transplante de Pulmão , Masculino , Camundongos , Profilaxia Pós-Exposição , Profilaxia Pré-Exposição , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Replicação Viral
6.
Artigo em Inglês | MEDLINE | ID: mdl-32540975

RESUMO

ATI-2173 is a novel liver-targeted molecule designed to deliver the 5'-monophosphate of clevudine for the treatment of chronic hepatitis B infection. Unlike other nucleos(t)ides, the active clevudine-5'-triphosphate is a noncompetitive, non-chain-terminating inhibitor of hepatitis B virus (HBV) polymerase that delivers prolonged reduction of viremia in both a woodchuck HBV model and in humans for up to 6 months after cessation of treatment. However, long-term clevudine treatment was found to exhibit reversible skeletal myopathy in a small subset of patients and was subsequently discontinued from development. ATI-2173 was designed by modifying clevudine with a 5'-phosphoramidate to deliver the 5'-monophosphate to the liver. Bypassing the first phosphorylation step of clevudine, the 5'-monophosphate is converted to the active 5'-triphosphate in the liver. ATI-2173 is a selective inhibitor of HBV with an anti-HBV 50% effective concentration (EC50) of 1.31 nM in primary human hepatocytes, with minimal to no toxicity in hepatocytes, skeletal muscle, liver, kidney, bone marrow, and cardiomyocytes. ATI-2173 activity was decreased by viral polymerase mutations associated with entecavir, lamivudine, and adefovir resistance, but not capsid inhibitor resistance mutations. A single oral dose of ATI-2173 demonstrated 82% hepatic extraction, no food effect, and greatly reduced peripheral exposure of clevudine compared with equimolar oral dosing of clevudine. Despite reduced plasma clevudine exposure, liver concentrations of the 5'-triphosphate were equivalent following ATI-2173 versus clevudine administration. By selectively delivering the 5'-monophosphate to the liver, while retaining the unique anti-HBV activity of the 5'-triphosphate, ATI-2173 may provide an improved pharmacokinetic profile for clinical use, reducing systemic exposure of clevudine and potentially eliminating skeletal myopathy.


Assuntos
Hepatite B Crônica , Hepatite B , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Nucleotídeos/uso terapêutico
7.
Sci Transl Med ; 12(541)2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32253226

RESUMO

Coronaviruses (CoVs) traffic frequently between species resulting in novel disease outbreaks, most recently exemplified by the newly emerged SARS-CoV-2, the causative agent of COVID-19. Here, we show that the ribonucleoside analog ß-d-N4-hydroxycytidine (NHC; EIDD-1931) has broad-spectrum antiviral activity against SARS-CoV-2, MERS-CoV, SARS-CoV, and related zoonotic group 2b or 2c bat-CoVs, as well as increased potency against a CoV bearing resistance mutations to the nucleoside analog inhibitor remdesivir. In mice infected with SARS-CoV or MERS-CoV, both prophylactic and therapeutic administration of EIDD-2801, an orally bioavailable NHC prodrug (ß-d-N4-hydroxycytidine-5'-isopropyl ester), improved pulmonary function and reduced virus titer and body weight loss. Decreased MERS-CoV yields in vitro and in vivo were associated with increased transition mutation frequency in viral, but not host cell RNA, supporting a mechanism of lethal mutagenesis in CoV. The potency of NHC/EIDD-2801 against multiple CoVs and oral bioavailability highlights its potential utility as an effective antiviral against SARS-CoV-2 and other future zoonotic CoVs.


Assuntos
Antivirais/administração & dosagem , Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Ribonucleosídeos/administração & dosagem , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Alanina/administração & dosagem , Alanina/análogos & derivados , Animais , Antibioticoprofilaxia , Betacoronavirus/fisiologia , COVID-19 , Linhagem Celular , Infecções por Coronavirus/patologia , Citidina/administração & dosagem , Citidina/análogos & derivados , Modelos Animais de Doenças , Farmacorresistência Viral , Humanos , Hidroxilaminas , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Modelos Moleculares , Mutação/efeitos dos fármacos , Pandemias , Pneumonia Viral/patologia , Cultura Primária de Células , RNA Viral , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Distribuição Aleatória , Sistema Respiratório/citologia , SARS-CoV-2
8.
Artigo em Inglês | MEDLINE | ID: mdl-31767721

RESUMO

N4-Hydroxycytidine (NHC) is an antiviral ribonucleoside analog that acts as a competitive alternative substrate for virally encoded RNA-dependent RNA polymerases. It exhibits measurable levels of cytotoxicity, with 50% cytotoxic concentration values ranging from 7.5 µM in CEM cells and up to >100 µM in other cell lines. The mitochondrial DNA-dependent RNA polymerase (POLRMT) has been shown to incorporate some nucleotide analogs into mitochondrial RNAs, resulting in substantial mitochondrial toxicity. NHC was tested in multiple assays intended to determine its potential to cause mitochondrial toxicity. NHC showed similar cytotoxicity in HepG2 cells incubated in a glucose-free and glucose-containing media, suggesting that NHC does not impair mitochondrial function in this cell line based on the Crabtree effect. We demonstrate that the 5'-triphosphate of NHC can be used by POLRMT for incorporation into nascent RNA chain but does not cause immediate chain termination. In PC-3 cells treated with NHC, the 50% inhibitory concentrations of mitochondrial protein expression inhibition were 2.7-fold lower than those for nuclear-encoded protein expression, but this effect did not result in selective mitochondrial toxicity. A 14-day incubation of HepG2 cells with NHC had no effect on mitochondrial DNA copy number or extracellular lactate levels. In CEM cells treated with NHC at 10 µM, a slight decrease (by ∼20%) in mitochondrial DNA copy number and a corresponding slight increase in extracellular lactate levels were detected, but these effects were not enhanced by an increase in NHC treatment concentration. In summary, the results indicate that mitochondrial impairment by NHC is not the main contributor to the compound's observed cytotoxicity in these cell lines.


Assuntos
Citidina/análogos & derivados , Mitocôndrias Hepáticas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura , Citidina/farmacologia , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dosagem de Genes , Células Hep G2 , Humanos , Ácido Láctico/metabolismo , Fosfatos/farmacologia
9.
Sci Transl Med ; 11(515)2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645453

RESUMO

Influenza viruses constitute a major health threat and economic burden globally, frequently exacerbated by preexisting or rapidly emerging resistance to antiviral therapeutics. To address the unmet need of improved influenza therapy, we have created EIDD-2801, an isopropylester prodrug of the ribonucleoside analog N 4-hydroxycytidine (NHC, EIDD-1931) that has shown broad anti-influenza virus activity in cultured cells and mice. Pharmacokinetic profiling demonstrated that EIDD-2801 was orally bioavailable in ferrets and nonhuman primates. Therapeutic oral dosing of influenza virus-infected ferrets reduced group pandemic 1 and group 2 seasonal influenza A shed virus load by multiple orders of magnitude and alleviated fever, airway epithelium histopathology, and inflammation, whereas postexposure prophylactic dosing was sterilizing. Deep sequencing highlighted lethal viral mutagenesis as the underlying mechanism of activity and revealed a prohibitive barrier to the development of viral resistance. Inhibitory concentrations were low nanomolar against influenza A and B viruses in disease-relevant well-differentiated human air-liquid interface airway epithelia. Correlating antiviral efficacy and cytotoxicity thresholds with pharmacokinetic profiles in human airway epithelium models revealed a therapeutic window >1713 and established dosing parameters required for efficacious human therapy. These data recommend EIDD-2801 as a clinical candidate with high potential for monotherapy of seasonal and pandemic influenza virus infections. Our results inform EIDD-2801 clinical trial design and drug exposure targets.


Assuntos
Antivirais/administração & dosagem , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Animais , Cães , Farmacorresistência Viral/genética , Feminino , Furões , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Células Madin Darby de Rim Canino , Camundongos , Microscopia Confocal , Infecções por Orthomyxoviridae/tratamento farmacológico , RNA Viral/genética
10.
J Virol ; 93(24)2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31578288

RESUMO

Coronaviruses (CoVs) have emerged from animal reservoirs to cause severe and lethal disease in humans, but there are currently no FDA-approved antivirals to treat the infections. One class of antiviral compounds, nucleoside analogues, mimics naturally occurring nucleosides to inhibit viral replication. While these compounds have been successful therapeutics for several viral infections, mutagenic nucleoside analogues, such as ribavirin and 5-fluorouracil, have been ineffective at inhibiting CoVs. This has been attributed to the proofreading activity of the viral 3'-5' exoribonuclease (ExoN). ß-d-N4-Hydroxycytidine (NHC) (EIDD-1931; Emory Institute for Drug Development) has recently been reported to inhibit multiple viruses. Here, we demonstrate that NHC inhibits both murine hepatitis virus (MHV) (50% effective concentration [EC50] = 0.17 µM) and Middle East respiratory syndrome CoV (MERS-CoV) (EC50 = 0.56 µM) with minimal cytotoxicity. NHC inhibited MHV lacking ExoN proofreading activity similarly to wild-type (WT) MHV, suggesting an ability to evade or overcome ExoN activity. NHC inhibited MHV only when added early during infection, decreased viral specific infectivity, and increased the number and proportion of G:A and C:U transition mutations present after a single infection. Low-level NHC resistance was difficult to achieve and was associated with multiple transition mutations across the genome in both MHV and MERS-CoV. These results point to a virus-mutagenic mechanism of NHC inhibition in CoVs and indicate a high genetic barrier to NHC resistance. Together, the data support further development of NHC for treatment of CoVs and suggest a novel mechanism of NHC interaction with the CoV replication complex that may shed light on critical aspects of replication.IMPORTANCE The emergence of coronaviruses (CoVs) into human populations from animal reservoirs has demonstrated their epidemic capability, pandemic potential, and ability to cause severe disease. However, no antivirals have been approved to treat these infections. Here, we demonstrate the potent antiviral activity of a broad-spectrum ribonucleoside analogue, ß-d-N4-hydroxycytidine (NHC), against two divergent CoVs. Viral proofreading activity does not markedly impact sensitivity to NHC inhibition, suggesting a novel interaction between a nucleoside analogue inhibitor and the CoV replicase. Further, passage in the presence of NHC generates only low-level resistance, likely due to the accumulation of multiple potentially deleterious transition mutations. Together, these data support a mutagenic mechanism of inhibition by NHC and further support the development of NHC for treatment of CoV infections.


Assuntos
Antivirais/farmacologia , Citidina/análogos & derivados , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Vírus da Hepatite Murina/efeitos dos fármacos , Vírus da Hepatite Murina/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronaviridae/tratamento farmacológico , Infecções por Coronaviridae/virologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Citidina/farmacologia , Farmacorresistência Viral , Exorribonucleases/metabolismo , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Vírus da Hepatite Murina/metabolismo , Mutagênese , RNA Polimerase Dependente de RNA/metabolismo , Células Vero , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
11.
Antiviral Res ; 171: 104597, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494195

RESUMO

The New World alphaviruses Venezuelan, Eastern, and Western equine encephalitis viruses (VEEV, EEEV and WEEV, respectively) commonly cause a febrile disease that can progress to meningoencephalitis, resulting in significant morbidity and mortality. To address the need for a therapeutic agent for the treatment of Alphavirus infections, we identified and pursued preclinical characterization of a ribonucleoside analog EIDD-1931 (ß-D-N4-hydroxycytidine, NHC), which has shown broad activity against alphaviruses in vitro and has a very high genetic barrier for development of resistance. To be truly effective as a therapeutic agent for VEEV infection a drug must penetrate the blood brain barrier and arrest virus replication in the brain. High plasma levels of EIDD-1931 are rapidly achieved in mice after oral dosing. Once in the plasma EIDD-1931 is efficiently distributed into organs, including brain, where it is rapidly converted to its active 5'-triphosphate. EIDD-1931 showed a good safety profile in mice after 7-day repeated dosing with up to 1000 mg/kg/day doses. In mouse model studies, EIDD-1931 was 90-100% effective in protecting mice against lethal intranasal infection when therapeutic treatment was started as late as 24 h post-infection, and partial protection was achieved when treatment was delayed for 48 h post-infection. These results support further preclinical development of EIDD-1931 as a potential anti-alphavirus drug.


Assuntos
Antivirais/farmacologia , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Encefalomielite Equina Venezuelana/virologia , Ribonucleosídeos/farmacologia , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacocinética , Linhagem Celular , Cromatografia Líquida , Modelos Animais de Doenças , Encefalomielite Equina Venezuelana/tratamento farmacológico , Cavalos , Camundongos , Estrutura Molecular , Ribonucleosídeos/administração & dosagem , Ribonucleosídeos/química , Ribonucleosídeos/farmacocinética , Espectrometria de Massas em Tandem , Distribuição Tecidual , Replicação Viral/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-29180528

RESUMO

There is a growing body of evidence suggesting that some ribonucleoside/ribonucleotide analogs may be incorporated into mitochondrial RNA by human mitochondrial DNA-dependent RNA polymerase (POLRMT) and disrupt mitochondrial RNA synthesis. An assessment of the incorporation efficiency of a ribonucleotide analog 5'-triphosphate by POLRMT may be used to evaluate the potential mitochondrial toxicity of the analog early in the development process. In this report, we provide a simple method to prepare active recombinant POLRMT. A robust in vitro nonradioactive primer extension assay was developed to assay the incorporation efficiency of ribonucleotide analog 5'-triphosphates. Our results show that many ribonucleotide analogs, including some antiviral compounds currently in various preclinical or clinical development stages, can be incorporated into newly synthesized RNA by POLRMT and that the incorporation of some of them can lead to chain termination. The discrimination (D) values of ribonucleotide analog 5'-triphosphates over those of natural ribonucleotide triphosphates (rNTPs) were measured to evaluate the incorporation efficiency of the ribonucleotide analog 5'-triphosphates by POLRMT. The discrimination values of natural rNTPs under the condition of misincorporation by POLRMT were used as a reference to evaluate the potential mitochondrial toxicity of ribonucleotide analogs. We propose the following criteria for the potential mitochondrial toxicity of ribonucleotide analogs based on D values: a safe compound has a D value of >105; a potentially toxic compound has a D value of >104 but <105; and a toxic compound has a D value of <104 This report provides a simple screening method that should assist investigators in designing ribonucleoside-based drugs having lower mitochondrial toxicity.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Mitocôndrias/genética , Polifosfatos/farmacologia , RNA/efeitos dos fármacos , Ribonucleosídeos/genética , Ribonucleotídeos/farmacologia , Antivirais/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , RNA/genética
13.
Proc Natl Acad Sci U S A ; 114(5): E811-E819, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096399

RESUMO

The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus (LRV1) has been implicated as a pathogenicity factor for leishmaniasis in rodent models and human disease, and associated with drug-treatment failures in Leishmania braziliensis and Leishmania guyanensis infections. Thus, methods targeting LRV1 could have therapeutic benefit. Here we screened a panel of antivirals for parasite and LRV1 inhibition, focusing on nucleoside analogs to capitalize on the highly active salvage pathways of Leishmania, which are purine auxotrophs. Applying a capsid flow cytometry assay, we identified two 2'-C-methyladenosine analogs showing selective inhibition of LRV1. Treatment resulted in loss of LRV1 with first-order kinetics, as expected for random virus segregation, and elimination within six cell doublings, consistent with a measured LRV1 copy number of about 15. Viral loss was specific to antiviral nucleoside treatment and not induced by growth inhibitors, in contrast to fungal dsRNA viruses. Comparisons of drug-treated LRV1+ and LRV1- lines recapitulated LRV1-dependent pathology and parasite replication in mouse infections, and cytokine secretion in macrophage infections. Agents targeting Totiviridae have not been described previously, nor are there many examples of inhibitors acting against dsRNA viruses more generally. The compounds identified here provide a key proof-of-principle in support of further studies identifying efficacious antivirals for use in in vivo studies of LRV1-mediated virulence.


Assuntos
Antivirais/farmacologia , Leishmania braziliensis/virologia , Leishmania guyanensis/virologia , Leishmaniavirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Leishmaniose/parasitologia , Leishmaniavirus/genética , Leishmaniavirus/metabolismo , Camundongos Endogâmicos C57BL , Nucleotídeos/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-27993851

RESUMO

Zika virus (ZIKV) is an emerging human pathogen that is spreading rapidly through the Americas and has been linked to the development of microcephaly and to a dramatically increased number of Guillain-Barré syndrome cases. Currently, no vaccine or therapeutic options for the prevention or treatment of ZIKV infections exist. In the study described in this report, we expressed, purified, and characterized full-length nonstructural protein 5 (NS5) and the NS5 polymerase domain (NS5pol) of ZIKV RNA-dependent RNA polymerase. Using purified NS5, we developed an in vitro nonradioactive primer extension assay employing a fluorescently labeled primer-template pair. Both purified NS5 and NS5pol can carry out in vitro RNA-dependent RNA synthesis in this assay. Our results show that Mn2+ is required for enzymatic activity, while Mg2+ is not. We found that ZIKV NS5 can utilize single-stranded DNA but not double-stranded DNA as a template or a primer to synthesize RNA. The assay was used to compare the efficiency of incorporation of analog 5'-triphosphates by the ZIKV polymerase and to calculate their discrimination versus that of natural ribonucleotide triphosphates (rNTPs). The 50% inhibitory concentrations for analog rNTPs were determined in an alternative nonradioactive coupled-enzyme assay. We determined that, in general, 2'-C-methyl- and 2'-C-ethynyl-substituted analog 5'-triphosphates were efficiently incorporated by the ZIKV polymerase and were also efficient chain terminators. Derivatives of these molecules may serve as potential antiviral compounds to be developed to combat ZIKV infection. This report provides the first characterization of ZIKV polymerase and demonstrates the utility of in vitro polymerase assays in the identification of potential ZIKV inhibitors.


Assuntos
Antivirais/farmacologia , Bioensaio , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Ribonucleotídeos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Antivirais/metabolismo , Sequência de Bases , Cátions Bivalentes , Primers do DNA/síntese química , Primers do DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Manganês/metabolismo , Polifosfatos/metabolismo , Domínios Proteicos , RNA Viral/antagonistas & inibidores , RNA Viral/biossíntese , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonucleotídeos/metabolismo , Coloração e Rotulagem/métodos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo
15.
Antiviral Res ; 136: 9-18, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27771389

RESUMO

Lassa virus (LASV) and Ebola virus (EBOV) infections are important global health issues resulting in significant morbidity and mortality. While several promising drug and vaccine trials for EBOV are ongoing, options for LASV infection are currently limited to ribavirin treatment. A major factor impeding the development of antiviral compounds to treat these infections is the need to manipulate the virus under BSL-4 containment, limiting research to a few institutes worldwide. Here we describe the development of a novel LASV minigenome assay based on the ambisense LASV S segment genome, with authentic terminal untranslated regions flanking a ZsGreen (ZsG) fluorescent reporter protein and a Gaussia princeps luciferase (gLuc) reporter gene. This assay, along with a similar previously established EBOV minigenome, was optimized for high-throughput screening (HTS) of potential antiviral compounds under BSL-2 containment. In addition, we rescued a recombinant LASV expressing ZsG, which, in conjunction with a recombinant EBOV reporter virus, was used to confirm any potential antiviral hits in vitro. Combining an initial screen to identify potential antiviral compounds at BSL-2 containment before progressing to HTS with infectious virus will reduce the amount of expensive and technically challenging BSL-4 containment research. Using these assays, we identified 6-azauridine as having anti-LASV activity, and demonstrated its anti-EBOV activity in human cells. We further identified 2'-deoxy-2'-fluorocytidine as having potent anti-LASV activity, with an EC50 value 10 times lower than that of ribavirin.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Ebolavirus/genética , Vírus Lassa/efeitos dos fármacos , Vírus Lassa/genética , Antivirais/química , Azauridina/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Descoberta de Drogas/métodos , Genes Reporter , Genoma Viral , Proteínas de Fluorescência Verde/genética , Doença pelo Vírus Ebola , Ensaios de Triagem em Larga Escala/métodos , Humanos , Febre Lassa , Luciferases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA