Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(10): e0276556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301851

RESUMO

Aspergillus flavus is an agriculturally important fungus that causes ear rot of maize and produces aflatoxins, of which B1 is the most carcinogenic naturally-produced compound. In the US, the management of aflatoxins includes the deployment of biological control agents that comprise two nonaflatoxigenic A. flavus strains, either Afla-Guard (member of lineage IB) or AF36 (lineage IC). We used genotyping-by-sequencing to examine the influence of both biocontrol agents on native populations of A. flavus in cornfields in Texas, North Carolina, Arkansas, and Indiana. This study examined up to 27,529 single-nucleotide polymorphisms (SNPs) in a total of 815 A. flavus isolates, and 353 genome-wide haplotypes sampled before biocontrol application, three months after biocontrol application, and up to three years after initial application. Here, we report that the two distinct A. flavus evolutionary lineages IB and IC differ significantly in their frequency distributions across states. We provide evidence of increased unidirectional gene flow from lineage IB into IC, inferred to be due to the applied Afla-Guard biocontrol strain. Genetic exchange and recombination of biocontrol strains with native strains was detected in as little as three months after biocontrol application and up to one and three years later. There was limited inter-lineage migration in the untreated fields. These findings suggest that biocontrol products that include strains from lineage IB offer the greatest potential for sustained reductions in aflatoxin levels over several years. This knowledge has important implications for developing new biocontrol strategies.


Assuntos
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/genética , Aflatoxinas/genética , Agentes de Controle Biológico , Zea mays/genética , Zea mays/microbiologia , Recombinação Genética
2.
Front Microbiol ; 9: 2336, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333810

RESUMO

Prior to harvest, maize kernels are invaded by a diverse population of fungal organisms that comprise the microbiome of the grain mass. Poor post-harvest practices and improper drying can lead to the growth of mycotoxigenic storage fungi and deterioration of grain quality. Hermetic storage bags are a low-cost technology for the preservation of grain during storage, which has seen significant adoption in many regions of Sub-Saharan Africa. This study explored the use of high-throughput DNA sequencing of the fungal Internal Transcribed Spacer 2 (ITS2) region for characterization of the fungal microbiome before and after 3 months of storage in hermetic and non-hermetic (woven) bags in the United States and Kenya. Analysis of 1,377,221 and 3,633,944 ITS2 sequences from the United States and Kenya, respectively, resulted in 251 and 164 operational taxonomic units (OTUs). Taxonomic assignment of these OTUs revealed 63 and 34 fungal genera in the US and Kenya samples, respectively, many of which were not detected by traditional plating methods. The most abundant genus was Fusarium, which was identified in all samples. Storage fungi were detected in the grain mass prior to the storage experiments and increased in relative abundance within the woven bags. The results also indicate that storage location had no effect on the fungal microbiome of grain stored in the United States, while storage bag type led to significant changes in fungal composition. The fungal microbiome of the Kenya grain also underwent significant changes in composition during storage and fungal diversity increased during storage regardless of bag type. Our results indicated that extraction of DNA from ground kernels is sufficient for identifying the fungi associated with the maize. The results also indicated that bag type was the most important factor influencing changes in fungal microbiome during storage. The results also support the recommended use of hermetic storage for reducing food safety risks, especially from mycotoxigenic fungi.

3.
Data Brief ; 17: 129-133, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29349107

RESUMO

The draft genome of Xylaria sp. isolate MSU_SB201401, causal agent of taproot decline of soybean in the southern U.S., is presented here. The genome assembly was 56.7 Mb in size with an L50 of 246. A total of 10,880 putative protein-encoding genes were predicted, including 647 genes encoding carbohydrate-active enzymes and 1053 genes encoding secreted proteins. This is the first draft genome of a plant-pathogenic Xylaria sp. associated with soybean. The draft genome of Xylaria sp. isolate MSU_SB201401 will provide an important resource for future experiments to determine the molecular basis of pathogenesis.

4.
Sci Rep ; 7(1): 17217, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222463

RESUMO

Bipolaris cookei (=Bipolaris sorghicola) causes target leaf spot, one of the most prevalent foliar diseases of sorghum. Little is known about the molecular basis of pathogenesis in B. cookei, in large part due to a paucity of resources for molecular genetics, such as a reference genome. Here, a draft genome sequence of B. cookei was obtained and analyzed. A hybrid assembly strategy utilizing Illumina and Pacific Biosciences sequencing technologies produced a draft nuclear genome of 36.1 Mb, organized into 321 scaffolds with L50 of 31 and N50 of 378 kb, from which 11,189 genes were predicted. Additionally, a finished mitochondrial genome sequence of 135,790 bp was obtained, which contained 75 predicted genes. Comparative genomics revealed that B. cookei possessed substantially fewer carbohydrate-active enzymes and secreted proteins than closely related Bipolaris species. Novel genes involved in secondary metabolism, including genes implicated in ophiobolin biosynthesis, were identified. Among 37 B. cookei genes induced during sorghum infection, one encodes a putative effector with a limited taxonomic distribution among plant pathogenic fungi. The draft genome sequence of B. cookei provided novel insights into target leaf spot of sorghum and is an important resource for future investigation.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Genoma Fúngico/genética , Folhas de Planta/microbiologia , Sorghum/microbiologia , Ascomicetos/enzimologia , Ascomicetos/metabolismo , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Genômica , Anotação de Sequência Molecular
5.
IMA Fungus ; 8(2): 385-396, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29242781

RESUMO

The genomes of Cercospora zeina, Fusarium pininemorale, Hawksworthiomyces lignivorus, Huntiella decipiens, and Ophiostoma ips are presented in this genome announcement. Three of these genomes are from plant pathogens and otherwise economically important fungal species. Fusarium pininemorale and H. decipiens are not known to cause significant disease but are closely related to species of economic importance. The genome sizes range from 25.99 Mb in the case of O. ips to 4.82 Mb for H. lignivorus. These genomes include the first reports of a genome from the genus Hawksworthiomyces. The availability of these genome data will allow the resolution of longstanding questions regarding the taxonomy of these species. In addition these genome sequences through comparative studies with closely related organisms will increase our understanding of how these species or close relatives cause disease.

6.
Fungal Biol ; 121(11): 966-983, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29029703

RESUMO

Stenocarpella maydis is a plant pathogenic fungus that causes Diplodia ear rot, one of the most destructive diseases of maize. To date, little information is available regarding the molecular basis of pathogenesis in this organism, in part due to limited genomic resources. In this study, a 54.8 Mb draft genome assembly of S. maydis was obtained with Illumina and PacBio sequencing technologies, and analyzed. Comparative genomic analyses with the predominant maize ear rot pathogens Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum revealed an expanded set of carbohydrate-active enzymes for cellulose and hemicellulose degradation in S. maydis. Analyses of predicted genes involved in starch degradation revealed six putative α-amylases, four extracellular and two intracellular, and two putative γ-amylases, one of which appears to have been acquired from bacteria via horizontal transfer. Additionally, 87 backbone genes involved in secondary metabolism were identified, which represents one of the largest known assemblages among Pezizomycotina species. Numerous secondary metabolite gene clusters were identified, including two clusters likely involved in the biosynthesis of diplodiatoxin and chaetoglobosins. The draft genome of S. maydis presented here will serve as a useful resource for molecular genetics, functional genomics, and analyses of population diversity in this organism.


Assuntos
Amilases/genética , Ascomicetos/metabolismo , Metabolismo dos Carboidratos , Redes e Vias Metabólicas/genética , Doenças das Plantas/microbiologia , Metabolismo Secundário , Zea mays/microbiologia , Ascomicetos/genética , Aspergillus flavus/genética , Celulose/metabolismo , Biologia Computacional , Fusarium/genética , Genoma Fúngico , Genômica , Família Multigênica , Polissacarídeos/metabolismo , Análise de Sequência de DNA
7.
Genome Announc ; 5(36)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883128

RESUMO

Cercospora cf. sigesbeckiae is an ascomycete fungal pathogen that infects various plants, including important agricultural commodities, such as soybean. Here, we report the first draft genome sequence and assembly of this pathogen.

8.
Genome Announc ; 5(34)2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839040

RESUMO

The taxonomically uncharacterized nematophagous fungus ARF18, which parasitizes cysts, juveniles, and adults of the soybean cyst nematode (Heterodera glycines), was proposed as a nematode biological control agent in 1991. A 46.3-Mb draft genome sequence of this fungus is presented, and a tentative taxonomic identification as a novel species of Brachyphoris is proposed.

9.
Mol Plant Pathol ; 18(4): 513-528, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27071505

RESUMO

Fusarium verticillioides is a globally important pathogen of maize, capable of causing severe yield reductions and economic losses. In addition, F. verticillioides produces toxic secondary metabolites during kernel colonization that pose significant threats to human and animal health. Fusarium verticillioides and other plant-pathogenic fungi possess a large number of genes with no known or predicted function, some of which could encode novel virulence factors or antifungal targets. In this study, we identified and characterized the novel gene FUG1 (Fungal Unknown Gene 1) in F. verticillioides through functional genetics. Deletion of FUG1 impaired maize kernel colonization and fumonisin biosynthesis. In addition, deletion of FUG1 increased sensitivity to the antimicrobial compound 2-benzoxazolinone and to hydrogen peroxide, which indicates that FUG1 may play a role in mitigating stresses associated with host defence. Transcriptional profiling via RNA-sequencing (RNA-seq) identified numerous fungal genes that were differentially expressed in the kernel environment following the deletion of FUG1, including genes involved in secondary metabolism and mycelial development. Sequence analysis of the Fug1 protein provided evidence for nuclear localization, DNA binding and a domain of unknown function associated with previously characterized transcriptional regulators. This information, combined with the observed transcriptional reprogramming in the deletion mutant, suggests that FUG1 represents a novel class of fungal transcription factors or genes otherwise involved in signal transduction.


Assuntos
Vias Biossintéticas/genética , Fumonisinas/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/patogenicidade , Genes Fúngicos , Benzoxazinas , Proteínas Fúngicas/metabolismo , Fusarium/crescimento & desenvolvimento , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes de Plantas , Interações Hidrofóbicas e Hidrofílicas , Família Multigênica , Micotoxinas/biossíntese , Estresse Oxidativo , Filogenia , Metabolismo Secundário/genética , Análise de Sequência de RNA , Especificidade da Espécie , Zea mays/genética , Zea mays/microbiologia
10.
Phytopathology ; 106(10): 1194-1205, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27392176

RESUMO

South Africa is one of the leading maize-producing countries in sub-Saharan Africa. Since the 1980s, Cercospora zeina, a causal agent of gray leaf spot of maize, has become endemic in South Africa, and is responsible for substantial yield reductions. To assess genetic diversity and population structure of C. zeina in South Africa, 369 isolates were collected from commercial maize farms in three provinces (KwaZulu-Natal, Mpumalanga, and North West). These isolates were evaluated with 14 microsatellite markers and species-specific mating type markers that were designed from draft genome sequences of C. zeina isolates from Africa (CMW 25467) and the United States (USPA-4). Sixty alleles were identified across 14 loci, and gene diversity values within each province ranged from 0.18 to 0.35. High levels of gene flow were observed (Nm = 5.51), and in a few cases, identical multilocus haplotypes were found in different provinces. Overall, 242 unique multilocus haplotypes were identified with a low clonal fraction of 34%. No distinct population clusters were identified using STRUCTURE, principal coordinate analysis, or Weir's theta θ statistic. The lack of population differentiation was supported by analysis of molecular variance tests, which indicated that only 2% of the variation was attributed to variability between populations from each province. Mating type ratios of MAT1-1 and MAT1-2 idiomorphs from 335 isolates were not significantly different from a 1:1 ratio in all provinces, which provided evidence for sexual reproduction. The draft genome of C. zeina CMW 25467 exhibited a complete genomic copy of the MAT1-1 idiomorph as well as exonic fragments of MAT genes from both idiomorphs. The high level of gene diversity, shared haplotypes at different geographical locations within South Africa, and presence of both MAT idiomorphs at all sites indicates widespread dispersal of C. zeina between maize fields in the country as well as evidence for sexual recombination. The outcomes of this genome-enabled study are important for disease management since the high diversity has implications for dispersal of fungicide resistance should it emerge and the need for diversified resistance breeding.


Assuntos
Ascomicetos/genética , Variação Genética , Genética Populacional , Genoma Fúngico/genética , Doenças das Plantas/microbiologia , Zea mays/microbiologia , Ascomicetos/isolamento & purificação , Fluxo Gênico , Geografia , Repetições de Microssatélites/genética , Análise de Sequência de DNA , África do Sul
11.
J Food Prot ; 79(9): 1498-1507, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-28221941

RESUMO

Contamination of maize ( Zea mays ) with fumonisins produced by the fungus Fusarium verticillioides is a global concern for food safety. Fumonisins are a group of polyketide-derived secondary metabolites linked to esophageal cancer and neural tube birth defects in humans and numerous toxicoses in livestock. Despite the importance of fumonisins in global maize production, the regulation of fumonisin biosynthesis during kernel pathogenesis is poorly understood. The HAP complex is a conserved, heterotrimeric transcriptional regulator that binds the consensus sequence CCAAT to modulate gene expression. Recently, functional characterization of the Hap3 subunit linked the HAP complex to the regulation of secondary metabolism and stalk rot pathogenesis in F. verticillioides . Here, we determine the involvement of HAP3 in fumonisin biosynthesis and kernel pathogenesis. Deletion of HAP3 suppressed fumonisin biosynthesis on both nonviable and live maize kernels and impaired pathogenesis in living kernels. Transcriptional profiling via RNA sequencing indicated that the HAP complex regulates at least 1,223 genes in F. verticillioides , representing nearly 10% of all predicted genes. Disruption of the HAP complex caused the misregulation of biosynthetic gene clusters underlying the production of secondary metabolites, including fusarins. Taken together, these results reveal that the HAP complex is a central regulator of fumonisin biosynthesis and kernel pathogenesis and works as both a positive and negative regulator of secondary metabolism in F. verticillioides .


Assuntos
Fumonisinas/metabolismo , Fusarium/metabolismo , Fungos/metabolismo , Zea mays/microbiologia
12.
Genom Data ; 3: 55-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26484148

RESUMO

Phomopsis longicolla is the primary cause of Phomopsis seed decay in soybean. This disease severely affects soybean seed quality by reducing seed viability and oil content, altering seed composition, and increasing frequencies of moldy and/or split beans. It is one of the most economically important soybean diseases. Here, we report the de novo assembled draft genome sequence of the P. longicolla isolate MSPL10-6, which was isolated from field-grown soybean seed in Mississippi, USA. This study represents the first reported genome sequence of a seedborne fungal pathogen in the Diaporthe-Phomopsis complex. The P. longicolla genome sequence will enable research into the genetic basis of fungal infection of soybean seed and provide information for the study of soybean-fungal interactions. The genome sequence will also be valuable for molecular genetic marker development, manipulation of pathogenicity-related genes and development of new control strategies for this pathogen.

13.
PLoS One ; 10(8): e0133495, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252018

RESUMO

Diseases of soybean caused by Cercospora spp. are endemic throughout the world's soybean production regions. Species diversity in the genus Cercospora has been underestimated due to overdependence on morphological characteristics, symptoms, and host associations. Currently, only two species (Cercospora kikuchii and C. sojina) are recognized to infect soybean; C. kikuchii causes Cercospora leaf blight (CLB) and purple seed stain (PSS), whereas C. sojina causes frogeye leaf spot. To assess cryptic speciation among pathogens causing CLB and PSS, phylogenetic and phylogeographic analyses were performed with isolates from the top three soybean producing countries (USA, Brazil, and Argentina; collectively accounting for ~80% of global production). Eight nuclear genes and one mitochondrial gene were partially sequenced and analyzed. Additionally, amino acid substitutions conferring fungicide resistance were surveyed, and the production of cercosporin (a polyketide toxin produced by many Cercospora spp.) was assessed. From these analyses, the long-held assumption of C. kikuchii as the single causal agent of CLB and PSS was rejected experimentally. Four cercosporin-producing lineages were uncovered with origins (about 1 Mya) predicted to predate agriculture. Some of the Cercospora spp. newly associated with CLB and PSS appear to represent undescribed species; others were not previously reported to infect soybeans. Lineage 1, which contained the ex-type strain of C. kikuchii, was monophyletic and occurred in Argentina and Brazil. In contrast, lineages 2 and 3 were polyphyletic and contained wide-host range species complexes. Lineage 4 was monophyletic, thrived in Argentina and the USA, and included the generalist Cercospora cf. flagellaris. Interlineage recombination was detected, along with a high frequency of mutations linked to fungicide resistance in lineages 2 and 3. These findings point to cryptic Cercospora species as underappreciated global considerations for soybean production and phytosanitary vigilance, and urge a reassessment of host-specificity as a diagnostic tool for Cercospora.


Assuntos
Ascomicetos/fisiologia , Glycine max/microbiologia , Doenças das Plantas/microbiologia , América , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Teorema de Bayes , DNA Mitocondrial/genética , Redes Reguladoras de Genes , Genes Fúngicos , Variação Genética , Haplótipos/genética , Japão , Filogenia , Folhas de Planta/microbiologia , Recombinação Genética/genética , Sementes/microbiologia
14.
BMC Genomics ; 15: 334, 2014 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-24885798

RESUMO

BACKGROUND: Tomato (Solanum lycopersicum), one of the world's most important vegetable crops, is highly susceptible to necrotrophic fungal pathogens such as Botrytis cinerea and Alternaria solani. Improving resistance through conventional breeding has been hampered by a shortage of resistant germplasm and difficulties in introgressing resistance into elite germplasm without linkage drag. The goal of this study was to explore natural variation among wild Solanum species to identify new sources of resistance to necrotrophic fungi and dissect mechanisms underlying resistance against B. cinerea. RESULTS: Among eight wild species evaluated for resistance against B. cinerea and A. solani, S. lycopersicoides expressed the highest levels of resistance against both pathogens. Resistance against B. cinerea manifested as containment of pathogen growth. Through next-generation RNA sequencing and de novo assembly of the S. lycopersicoides transcriptome, changes in gene expression were analyzed during pathogen infection. In response to B. cinerea, differentially expressed transcripts grouped into four categories: genes whose expression rapidly increased then rapidly decreased, genes whose expression rapidly increased and plateaued, genes whose expression continually increased, and genes with decreased expression. Homology-based searches also identified a limited number of highly expressed B. cinerea genes. Almost immediately after infection by B. cinerea, S. lycopersicoides suppressed photosynthesis and metabolic processes involved in growth, energy generation, and response to stimuli, and simultaneously induced various defense-related genes, including pathogenesis-related protein 1 (PR1), a beta-1,3-glucanase (glucanase), and a subtilisin-like protease, indicating a shift in priority towards defense. Moreover, cluster analysis revealed novel, uncharacterized genes that may play roles in defense against necrotrophic fungal pathogens in S. lycopersicoides. The expression of orthologous defense-related genes in S. lycopersicum after infection with B. cinerea revealed differences in the onset and intensity of induction, thus illuminating a potential mechanism explaining the increased susceptibility. Additionally, metabolic pathway analyses identified putative defense-related categories of secondary metabolites. CONCLUSIONS: In sum, this study provided insight into resistance against necrotrophic fungal pathogens in the Solanaceae, as well as novel sequence resources for S. lycopersicoides.


Assuntos
Botrytis/patogenicidade , Farmacorresistência Fúngica/genética , Solanum/microbiologia , Transcrição Gênica , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , Solanum/genética , Solanum/metabolismo
15.
Fungal Genet Biol ; 69: 52-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24875423

RESUMO

Among eukaryotic organisms, the HAP complex is a conserved, multimeric transcription factor that regulates gene expression by binding to the consensus sequence CCAAT. In filamentous fungi, the HAP complex has been linked to primary and secondary metabolism, but its role in pathogenesis has not been investigated extensively. The overarching goal of this study was to elucidate the role of the HAP complex in Fusariumverticillioides, a ubiquitous and damaging pathogen of maize. To this end, orthologs of core HAP complex genes (FvHAP2, FvHAP3, and FvHAP5) were identified and deleted in F. verticillioides via a reverse genetics approach. Deletion of FvHAP2, FvHAP3, or FvHAP5 resulted in an indistinguishable phenotype among the deletion strains, including reduced radial growth and conidiation, altered colony morphology, and derepression of pigmentation. Additionally, disruption of the HAP complex impaired infection and colonization of maize stalks. Deletion strains were hypersensitive to osmotic and oxidative stress, which suggests the HAP complex of F. verticillioides may mediate responses to environmental stress during pathogenesis. This study directly implicates the HAP complex in primary and secondary metabolism in F. verticillioides and provides one of the first links between the HAP complex and virulence in a plant pathogenic fungus.


Assuntos
Fusarium/genética , Regulação Fúngica da Expressão Gênica , Complexos Multienzimáticos/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Fusarium/fisiologia , Deleção de Genes , Morfogênese , Complexos Multienzimáticos/genética , Pigmentos Biológicos/metabolismo , Doenças das Plantas/microbiologia , Metabolismo Secundário , Esporos Fúngicos/crescimento & desenvolvimento , Estresse Fisiológico , Fatores de Transcrição/genética , Virulência , Zea mays/microbiologia
16.
PLoS One ; 9(1): e81832, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454689

RESUMO

UNLABELLED: Fusarium virguliforme causes sudden death syndrome (SDS) of soybean, a disease of serious concern throughout most of the soybean producing regions of the world. Despite the global importance, little is known about the pathogenesis mechanisms of F. virguliforme. Thus, we applied Next-Generation DNA Sequencing to reveal the draft F. virguliforme genome sequence and identified putative pathogenicity genes to facilitate discovering the mechanisms used by the pathogen to cause this disease. METHODOLOGY/PRINCIPAL FINDINGS: We have generated the draft genome sequence of F. virguliforme by conducting whole-genome shotgun sequencing on a 454 GS-FLX Titanium sequencer. Initially, single-end reads of a 400-bp shotgun library were assembled using the PCAP program. Paired end sequences from 3 and 20 Kb DNA fragments and approximately 100 Kb inserts of 1,400 BAC clones were used to generate the assembled genome. The assembled genome sequence was 51 Mb. The N50 scaffold number was 11 with an N50 Scaffold length of 1,263 Kb. The AUGUSTUS gene prediction program predicted 14,845 putative genes, which were annotated with Pfam and GO databases. Gene distributions were uniform in all but one of the major scaffolds. Phylogenic analyses revealed that F. virguliforme was closely related to the pea pathogen, Nectria haematococca. Of the 14,845 F. virguliforme genes, 11,043 were conserved among five Fusarium species: F. virguliforme, F. graminearum, F. verticillioides, F. oxysporum and N. haematococca; and 1,332 F. virguliforme-specific genes, which may include pathogenicity genes. Additionally, searches for candidate F. virguliforme pathogenicity genes using gene sequences of the pathogen-host interaction database identified 358 genes. CONCLUSIONS: The F. virguliforme genome sequence and putative pathogenicity genes presented here will facilitate identification of pathogenicity mechanisms involved in SDS development. Together, these resources will expedite our efforts towards discovering pathogenicity mechanisms in F. virguliforme. This will ultimately lead to improvement of SDS resistance in soybean.


Assuntos
Fusarium/genética , Fusarium/fisiologia , Genômica , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Sequência Conservada , Proteínas Fúngicas/genética , Genes Fúngicos/genética , Anotação de Sequência Molecular , Filogenia , Especificidade da Espécie
17.
Environ Microbiol ; 16(7): 2004-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24237664

RESUMO

Fusarium verticillioides produces fumonisin mycotoxins during colonization of maize. Currently, molecular mechanisms underlying responsiveness of F.verticillioides to extracellular cues during pathogenesis are poorly understood. In this study, insertional mutants were created and screened to identify genes involved in responses to extracellular starch. In one mutant, the restriction enzyme-mediated integration cassette disrupted a gene (UBL1) encoding a UBR-Box/RING domain E3 ubiquitin ligase involved in the N-end rule pathway. Disruption of UBL1 in F.verticillioides (Δubl1) influenced conidiation, hyphal morphology, pigmentation and amylolysis. Disruption of UBL1 also impaired kernel colonization, but the ratio of fumonisin B1 per unit growth was not significantly reduced. The inability of a Δubl1 mutant to recognize an N-end rule degron confirmed involvement of UBL1 in the N-end rule pathway. Additionally, Ubl1 physically interacted with two G protein α subunits of F.verticillioides, thus implicating UBL1 in G protein-mediated sensing of the external environment. Furthermore, deletion of the UBL1 orthologue in F.graminearum reduced virulence on wheat and maize, thus indicating that UBL1 has a broader role in virulence among Fusarium species. This study provides the first linkage between the N-end rule pathway and fungal pathogenesis, and illustrates a new mechanism through which fungi respond to the external environment.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica , Hifas/patogenicidade , Proteína SUMO-1/metabolismo , Amido/metabolismo , Fumonisinas/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Deleção de Genes , Hifas/genética , Hifas/metabolismo , Mutagênese Insercional , Doenças das Plantas/microbiologia , Proteólise , Proteína SUMO-1/genética , Transdução de Sinais , Triticum/microbiologia , Virulência , Zea mays/microbiologia
18.
PLoS One ; 8(7): e67656, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844049

RESUMO

The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1) during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1) was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides.


Assuntos
Fumonisinas/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Polímeros/metabolismo , Fatores de Transcrição/metabolismo , Dedos de Zinco , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Fusarium/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ordem dos Genes , Marcação de Genes , Manitol/metabolismo , Dados de Sequência Molecular , Alinhamento de Sequência , Sorbitol/farmacologia , Álcoois Açúcares/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Dedos de Zinco/genética
19.
Phytopathology ; 103(10): 1045-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23721180

RESUMO

Cercospora sojina causes frogeye leaf spot of soybean, which can cause serious economic losses in the United States. In this study, 132 C. sojina isolates were collected from six fields (from two counties, Cross and Crawford) in Arkansas. To determine mating type, a multiplex polymerase chain reaction assay was developed with primers specific for C. sojina. Of the 132 isolates, 68 isolates had the MAT1-1-1 idiomorph and 64 isolates had the MAT1-2 idiomorph; no isolates possessed both idiomorphs. Both mating types were present in a variety of spatial scales, including separate lesions on individual leaves. Clone-corrected data from eight microsatellites indicated that mating-type loci were present in approximately equal proportions in all populations analyzed, which suggests that Arkansas populations of C. sojina are undergoing cryptic sexual reproduction. All six populations evaluated had high genotypic diversity of 26 to 79%. In addition, among strains isolated from a single leaf, multiple and distinct haplotypes were associated with both mating types, supporting the hypothesis that sexual reproduction occurs within the populations. Most populations showed significant gametic disequilibrium but levels of disequilibrium were relatively low, particularly in populations from Crawford County. A low differentiation index (GST) was observed for all simple-sequence repeat markers across all populations. Furthermore, the value of G statistics between populations suggests that significant genetic exchange exists among the populations. Taken together, these results demonstrate that C. sojina populations from Arkansas are genetically diverse and most likely undergoing sexual reproduction.


Assuntos
Genes Fúngicos Tipo Acasalamento , Glycine max , Arkansas , Variação Genética , Dados de Sequência Molecular , Doenças das Plantas , Glycine max/genética
20.
J Microbiol Methods ; 92(3): 244-5, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23305924

RESUMO

To facilitate functional genomics in the soybean pathogen Phomopsis longicolla, we developed a robust Agrobacterium tumefaciens-mediated transformation system that yielded 150-250 transformants per 1×10(6) conidia of P. longicolla. This first report of P. longicolla transformation provides a useful tool for insertional mutagenesis in an increasingly important pathogen of soybean.


Assuntos
Ascomicetos/genética , Técnicas de Transferência de Genes , Transformação Genética , Agrobacterium tumefaciens/genética , Mutagênese Insercional/métodos , Doenças das Plantas/microbiologia , Glycine max/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA