Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 93: 103098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38320370

RESUMO

Characterising clinically-relevant vascular features, such as vessel density and fractal dimension, can benefit biomarker discovery and disease diagnosis for both ophthalmic and systemic diseases. In this work, we explicitly encode vascular features into an end-to-end loss function for multi-class vessel segmentation, categorising pixels into artery, vein, uncertain pixels, and background. This clinically-relevant feature optimised loss function (CF-Loss) regulates networks to segment accurate multi-class vessel maps that produce precise vascular features. Our experiments first verify that CF-Loss significantly improves both multi-class vessel segmentation and vascular feature estimation, with two standard segmentation networks, on three publicly available datasets. We reveal that pixel-based segmentation performance is not always positively correlated with accuracy of vascular features, thus highlighting the importance of optimising vascular features directly via CF-Loss. Finally, we show that improved vascular features from CF-Loss, as biomarkers, can yield quantitative improvements in the prediction of ischaemic stroke, a real-world clinical downstream task. The code is available at https://github.com/rmaphoh/feature-loss.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Fundo de Olho
2.
Neuroimage Clin ; 39: 103483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572514

RESUMO

The objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients. The number of gradient directions had an impact on white matter analysis results, with statistically significant differences between groups being drastically reduced when using 21 gradient directions instead of the original 61. Fourteen teams from different institutions were tasked to use DL to enhance three diffusion metrics (FA, AD and MD) calculated from data acquired with 21 gradient directions and a b-value of 1000 s/mm2. The goal was to produce results that were comparable to those calculated from 61 gradient directions. The results were evaluated using both standard image quality metrics and Tract-Based Spatial Statistics (TBSS) to compare episodic and chronic migraine patients. The study results suggest that while most DL techniques improved the ability to detect statistical differences between groups, they also led to an increase in false positive. The results showed that there was a constant growth rate of false positives linearly proportional to the new true positives, which highlights the risk of generalization of AI-based tasks when assessing diverse clinical cohorts and training using data from a single group. The methods also showed divergent performance when replicating the original distribution of the data and some exhibited significant bias. In conclusion, extreme caution should be exercised when using AI methods for harmonization or synthesis in clinical studies when processing heterogeneous data in clinical studies, as important information may be altered, even when global metrics such as structural similarity or peak signal-to-noise ratio appear to suggest otherwise.


Assuntos
Aprendizado Profundo , Transtornos de Enxaqueca , Humanos , Imagem de Tensor de Difusão/métodos , Inteligência Artificial , Imagem de Difusão por Ressonância Magnética/métodos , Transtornos de Enxaqueca/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
3.
Med Image Anal ; 87: 102807, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37120992

RESUMO

Low-field (<1T) magnetic resonance imaging (MRI) scanners remain in widespread use in low- and middle-income countries (LMICs) and are commonly used for some applications in higher income countries e.g. for small child patients with obesity, claustrophobia, implants, or tattoos. However, low-field MR images commonly have lower resolution and poorer contrast than images from high field (1.5T, 3T, and above). Here, we present Image Quality Transfer (IQT) to enhance low-field structural MRI by estimating from a low-field image the image we would have obtained from the same subject at high field. Our approach uses (i) a stochastic low-field image simulator as the forward model to capture uncertainty and variation in the contrast of low-field images corresponding to a particular high-field image, and (ii) an anisotropic U-Net variant specifically designed for the IQT inverse problem. We evaluate the proposed algorithm both in simulation and using multi-contrast (T1-weighted, T2-weighted, and fluid attenuated inversion recovery (FLAIR)) clinical low-field MRI data from an LMIC hospital. We show the efficacy of IQT in improving contrast and resolution of low-field MR images. We demonstrate that IQT-enhanced images have potential for enhancing visualisation of anatomical structures and pathological lesions of clinical relevance from the perspective of radiologists. IQT is proved to have capability of boosting the diagnostic value of low-field MRI, especially in low-resource settings.


Assuntos
Encéfalo , Meios de Contraste , Criança , Humanos , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Algoritmos
4.
Med Image Anal ; 75: 102257, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731771

RESUMO

Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia. 4D-DANI-Net is a modular framework based on adversarial training and a set of novel spatiotemporal, biologically-informed constraints. To ensure efficient training and overcome memory limitations affecting such high-dimensional problems, we rely on three key technological advances: i) a new 3D training consistency mechanism called Profile Weight Functions (PWFs), ii) a 3D super-resolution module and iii) a transfer learning strategy to fine-tune the system for a given individual. To evaluate our approach, we trained the framework on 9852 T1-weighted MRI scans from 876 participants in the Alzheimer's Disease Neuroimaging Initiative dataset and held out a separate test set of 1283 MRI scans from 170 participants for quantitative and qualitative assessment of the personalised time series of synthetic images. We performed three evaluations: i) image quality assessment; ii) quantifying the accuracy of regional brain volumes over and above benchmark models; and iii) quantifying visual perception of the synthetic images by medical experts. Overall, both quantitative and qualitative results show that 4D-DANI-Net produces realistic, low-artefact, personalised time series of synthetic T1 MRI that outperforms benchmark models.


Assuntos
Doença de Alzheimer , Neuroimagem , Envelhecimento , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
5.
Neuroimage ; 221: 117128, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673745

RESUMO

Cross-scanner and cross-protocol variability of diffusion magnetic resonance imaging (dMRI) data are known to be major obstacles in multi-site clinical studies since they limit the ability to aggregate dMRI data and derived measures. Computational algorithms that harmonize the data and minimize such variability are critical to reliably combine datasets acquired from different scanners and/or protocols, thus improving the statistical power and sensitivity of multi-site studies. Different computational approaches have been proposed to harmonize diffusion MRI data or remove scanner-specific differences. To date, these methods have mostly been developed for or evaluated on single b-value diffusion MRI data. In this work, we present the evaluation results of 19 algorithms that are developed to harmonize the cross-scanner and cross-protocol variability of multi-shell diffusion MRI using a benchmark database. The proposed algorithms rely on various signal representation approaches and computational tools, such as rotational invariant spherical harmonics, deep neural networks and hybrid biophysical and statistical approaches. The benchmark database consists of data acquired from the same subjects on two scanners with different maximum gradient strength (80 and 300 â€‹mT/m) and with two protocols. We evaluated the performance of these algorithms for mapping multi-shell diffusion MRI data across scanners and across protocols using several state-of-the-art imaging measures. The results show that data harmonization algorithms can reduce the cross-scanner and cross-protocol variabilities to a similar level as scan-rescan variability using the same scanner and protocol. In particular, the LinearRISH algorithm based on adaptive linear mapping of rotational invariant spherical harmonics features yields the lowest variability for our data in predicting the fractional anisotropy (FA), mean diffusivity (MD), mean kurtosis (MK) and the rotationally invariant spherical harmonic (RISH) features. But other algorithms, such as DIAMOND, SHResNet, DIQT, CMResNet show further improvement in harmonizing the return-to-origin probability (RTOP). The performance of different approaches provides useful guidelines on data harmonization in future multi-site studies.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Adulto , Imagem de Difusão por Ressonância Magnética/instrumentação , Imagem de Difusão por Ressonância Magnética/normas , Humanos , Processamento de Imagem Assistida por Computador/normas , Neuroimagem/instrumentação , Neuroimagem/normas , Análise de Regressão
6.
Med Image Comput Comput Assist Interv ; 11765: 860-868, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32432230

RESUMO

We introduce Disease Knowledge Transfer (DKT), a novel technique for transferring biomarker information between related neurodegenerative diseases. DKT infers robust multimodal biomarker trajectories in rare neurodegenerative diseases even when only limited, unimodal data is available, by transferring information from larger multimodal datasets from common neurodegenerative diseases. DKT is a joint-disease generative model of biomarker progressions, which exploits biomarker relationships that are shared across diseases. Our proposed method allows, for the first time, the estimation of plausible multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare neurodegenerative disease where only unimodal MRI data is available. For this we train DKT on a combined dataset containing subjects with two distinct diseases and sizes of data available: 1) a larger, multimodal typical AD (tAD) dataset from the TADPOLE Challenge, and 2) a smaller unimodal Posterior Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for which only a limited number of Magnetic Resonance Imaging (MRI) scans are available. Although validation is challenging due to lack of data in PCA, we validate DKT on synthetic data and two patient datasets (TADPOLE and PCA cohorts), showing it can estimate the ground truth parameters in the simulation and predict unseen biomarkers on the two patient datasets. While we demonstrated DKT on Alzheimer's variants, we note DKT is generalisable to other forms of related neurodegenerative diseases. Source code for DKT is available online: https://github.com/mrazvan22/dkt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA