RESUMO
Almost all attempts to date at gene therapy approaches for monogenetic disease have used the amino acid sequences of the natural protein. In the current study, we use a designed, thermostable form of glucocerebrosidase (GCase), the enzyme defective in Gaucher disease (GD), to attempt to alleviate neurological symptoms in a GD mouse that models type 3 disease, i.e. the chronic neuronopathic juvenile subtype. Upon injection of an AAVrh10 (adeno-associated virus, serotype rh10) vector containing the designed GCase (dGCase) into the left lateral ventricle of Gba-/-;Gbatg mice, a significant improvement in body weight and life-span was observed, compared to injection of the same mouse with the wild type enzyme (wtGCase). Moreover, a reduction in levels of glucosylceramide (GlcCer), and an increase in levels of GCase activity were seen in the right hemisphere of Gba-/-;Gbatg mice, concomitantly with a significant improvement in motor function, reduction of neuroinflammation and a reduction in mRNA levels of various genes shown previously to be elevated in the brain of mouse models of neurological forms of GD. Together, these data pave the way for the possible use of modified proteins in gene therapy for lysosomal storage diseases and other monogenetic disorders.
Assuntos
Dependovirus , Modelos Animais de Doenças , Doença de Gaucher , Terapia Genética , Vetores Genéticos , Glucosilceramidase , Animais , Doença de Gaucher/terapia , Doença de Gaucher/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Dependovirus/genética , Terapia Genética/métodos , Glucosilceramidas/metabolismo , HumanosRESUMO
Despite being the second most common neurodegenerative disorder, little is known about Parkinson's disease (PD) pathogenesis. A number of genetic factors predispose towards PD, among them mutations in GBA1, which encodes the lysosomal enzyme acid-ß-glucosidase. We now perform non-targeted, mass spectrometry based quantitative proteomics on five brain regions from PD patients with a GBA1 mutation (PD-GBA) and compare to age- and sex-matched idiopathic PD patients (IPD) and controls. Two proteins were differentially-expressed in all five brain regions whereas significant differences were detected between the brain regions, with changes consistent with loss of dopaminergic signaling in the substantia nigra, and activation of a number of pathways in the cingulate gyrus, including ceramide synthesis. Mitochondrial oxidative phosphorylation was inactivated in PD samples in most brain regions and to a larger extent in PD-GBA. This study provides a comprehensive large-scale proteomics dataset for the study of PD-GBA.
RESUMO
Gaucher disease (GD) is a lysosomal storage disorder (LSD) caused by the defective activity of acid ß-glucosidase (GCase) which results from mutations in GBA1. Neurological forms of GD (nGD) can be generated in mice by intra-peritoneal injection of conduritol B-epoxide (CBE) which irreversibly inhibits GCase. Using this approach, a number of pathological pathways have been identified in mouse brain by RNAseq. However, unlike transcriptomics, proteomics gives direct information about protein expression which is more likely to provide insight into which cellular pathways are impacted in disease. We now perform non-targeted, mass spectrometry-based quantitative proteomics on brains from mice injected with 50 mg/kg body weight CBE for 13 days. Of the 5038 detected proteins, 472 were differentially expressed between control and CBE-injected mice of which 104 were selected for further analysis based on higher stringency criteria. We also compared these proteins with differentially expressed genes (DEGs) identified by RNAseq. Some lysosomal proteins were up-regulated as was interferon signaling, whereas levels of ion channel related proteins and some proteins associated with neurotransmitter signaling were reduced, as was cholesterol metabolism. One protein, transglutaminase 1 (TGM1), which is elevated in a number of neurodegenerative diseases, was absent from the control group but was found at high levels in CBE-injected mice, and located in the extracellular matrix (ECM) in layer V of the cortex and intracellularly in Purkinje cells in the cerebellum. Together, the proteomics data confirm previous RNAseq data and add additional mechanistic understanding about cellular pathways that may play a role in nGD pathology.
Assuntos
Doença de Gaucher , Animais , Camundongos , Doença de Gaucher/metabolismo , Proteômica , Glucosilceramidase/genética , Encéfalo/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismoRESUMO
A number of genetic risk factors have been identified over the past decade for Parkinson's Disease (PD), with variants in GBA prominent among them. GBA encodes the lysosomal enzyme that degrades the glycosphingolipid, glucosylceramide (GlcCer), with the activity of this enzyme defective in Gaucher disease. Based on the ill-defined relationship between glycosphingolipid metabolism and PD, we now analyze levels of various lipids by liquid chromatography/electrospray ionization-tandem mass spectrometry in four brain regions from age- and sex-matched patient samples, including idiopathic PD, PD patients with a GBA mutation and compare both to control brains (n = 21 for each group) obtained from individuals who died from a cause unrelated to PD. Of all the glycerolipids, sterols, and (glyco)sphingolipids (251 lipids in total), the only lipid class which showed significant differences were the gangliosides (sialic acid-containing complex glycosphingolipids), which were elevated in 3 of the 4 PD-GBA brain regions. There was no clear correlation between levels of individual gangliosides and the genetic variant in Gaucher disease [9 samples of severe (neuronopathic), 4 samples of mild (non-neuronopathic) GBA variants, and 8 samples with low pathogenicity variants which have a higher risk for development of PD]. Most brain regions, i.e. occipital cortex, cingulate gyrus, and striatum, did not show a statistically significant elevation of GlcCer in PD-GBA. Only one region, the middle temporal gyrus, showed a small, but significant elevation in GlcCer concentration in PD-GBA. We conclude that changes in ganglioside, but not in GlcCer levels, may contribute to the association between PD and GBA mutations.
RESUMO
Mutations in GBA, which encodes the lysosomal enzyme glucocerebrosidase, are the highest genetic risk factor for Parkinson's disease (PD), although the mechanistic link between GBA mutations and PD is unknown. An attractive hypothesis is that the lipid substrate of glucocerebrosidase, glucosylceramide, accumulates in patients with PD with a GBA mutation (PD-GBA). Despite the availability of new and accurate methods to quantitatively measure brain glucosylceramide levels, there is little evidence that glucosylceramide, or its deacetylated derivative, glucosylsphingosine, accumulates in human PD or PD-GBA brain or cerebrospinal fluid. Thus, a straightforward association between glucosylceramide levels and the development of PD does not appear valid, necessitating the involvement of other cellular pathways to explain this association, which could involve defects in lysosomal function.
Assuntos
Glucosilceramidase , Glucosilceramidas , Doença de Parkinson , Encéfalo/metabolismo , Glucosilceramidase/genética , Glucosilceramidas/metabolismo , Humanos , Lisossomos/metabolismo , Mutação , Doença de Parkinson/genéticaRESUMO
Most lysosomal storage diseases (LSDs) have a significant neurological component, including types 2 and 3 Gaucher disease (neuronal forms of Gaucher disease; nGD). No therapies are currently available for nGD since the recombinant enzymes used in the systemic form of Gaucher disease do not cross the blood-brain barrier (BBB). However, a number of promising approaches are currently being tested, including substrate reduction therapy (SRT), in which partial inhibition of the synthesis of the glycosphingolipids (GSLs) that accumulate in nGD lowers their accumulation. We now induce nGD in mice by injection with conduritol B-epoxide (CBE), an irreversible inhibitor of acid beta-glucosidase (GCase), the enzyme defective in nGD, with or without co-injection with Genz-667161, a prototype for SRT which crosses the BBB. Significant neuropathology, and a reduction in lifespan, was observed upon CBE injection, and this was largely reversed by co-injection with Genz-667161, along with a reduction in glucosylceramide and glucosylsphingosine levels. Analysis of gene expression by RNAseq revealed that Genz-667161 largely reversed the changes in genes and pathways that were differentially expressed upon CBE injection, specifically pathways of GSL metabolism, lipoproteins and other lipid metabolic pathways, lipid droplets, astrocyte activation, neuronal function, and to some extent, neuroinflammation. Together, this demonstrates the efficacy of SRT to reverse the effects of substrate accumulation on pathological components and pathways in nGD brain.
Assuntos
Modelos Animais de Doenças , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Glucosilceramidase/antagonistas & inibidores , Glicoesfingolipídeos/antagonistas & inibidores , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Doença de Gaucher/tratamento farmacológico , Glucosilceramidase/metabolismo , Glicoesfingolipídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologiaRESUMO
Gaucher disease (GD) is currently the focus of considerable attention due primarily to the association between the gene that causes GD (GBA) and Parkinson's disease. Mouse models exist for the systemic (type 1) and for the acute neuronopathic forms (type 2) of GD. Here we report the generation of a mouse that phenotypically models chronic neuronopathic type 3 GD. Gba-/-;Gbatg mice, which contain a Gba transgene regulated by doxycycline, accumulate moderate levels of the offending substrate in GD, glucosylceramide, and live for up to 10 months, i.e. significantly longer than mice which model type 2 GD. Gba-/-;Gbatg mice display behavioral abnormalities at â¼4 months, which deteriorate with age, along with significant neuropathology including loss of Purkinje neurons. Gene expression is altered in the brain and in isolated microglia, although the changes in gene expression are less extensive than in mice modeling type 2 disease. Finally, bone deformities are consistent with the Gba-/-;Gbatg mice being a genuine type 3 GD model. Together, the Gba-/-;Gbatg mice share pathological pathways with acute neuronopathic GD mice but also display differences that might help understand the distinct disease course and progression of type 2 and 3 patients.
Assuntos
Doença de Gaucher , Células de Purkinje , Animais , Encéfalo , Modelos Animais de Doenças , Doença de Gaucher/genética , Glucosilceramidase/genética , Humanos , CamundongosRESUMO
The lysosome is a central player in the cell, acting as a clearing house for macromolecular degradation, but also plays a critical role in a variety of additional metabolic and regulatory processes. The lysosome has recently attracted the attention of neurobiologists and neurologists since a number of neurological diseases involve a lysosomal component. Among these is Parkinson's disease (PD). While heterozygous and homozygous mutations in GBA1 are the highest genetic risk factor for PD, studies performed over the past decade have suggested that lysosomal loss of function is likely involved in PD pathology, since a significant percent of PD patients have a mutation in one or more genes that cause a lysosomal storage disease (LSD). Although the mechanistic connection between the lysosome and PD remains somewhat enigmatic, significant evidence is accumulating that lysosomal dysfunction plays a central role in PD pathophysiology. Thus, lysosomal dysfunction, resulting from mutations in lysosomal genes, may enhance the accumulation of α-synuclein in the brain, which may result in the earlier development of PD.
Assuntos
Doenças por Armazenamento dos Lisossomos/complicações , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/genética , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Animais , Encéfalo/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Lisossomos/metabolismo , Mutação/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMO
Thin section histology is limited in providing 3D structural information, particularly of the intricate morphology of the vasculature. Availability of high spatial resolution imaging for thick samples, would overcome the restriction dictated by low light penetration. Our study aimed at optimizing the procedure for efficient and affordable tissue clearing, along with an appropriate immunofluorescence labeling that will be applicable for high resolution imaging of blood and lymphatic vessels. The new procedure, termed whole organ blood and lymphatic vessels imaging (WOBLI), is based on two previously reported methods, CLARITY and ScaleA2. We used this procedure for the analysis of isolated whole ovary, uterus, lung and liver. These organs were subjected to passive clearing, following fixation, immunolabeling and embedding in hydrogel. Cleared specimens were immersed in ScaleA2 solution until transparency was achieved and imaged using light sheet microscopy. We demonstrate that WOBLI allows detailed analysis and generation of structural information of the lymphatic and blood vasculature from thick slices and more importantly, from whole organs. We conclude that WOBLI offers the advantages of morphology and fluorescence preservation with efficient clearing. Furthermore, WOBLI provides a robust, cost-effective method for generation of transparent specimens, allowing high resolution, 3D-imaging of blood and lymphatic vessels networks.