Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Insect Conserv ; 27(3): 455-465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234225

RESUMO

Moth populations have declined across large parts of north-western Europe since the mid-20th century due, in part, to agricultural intensification. Agri-environment schemes (AES) are widely implemented across Europe to protect biodiversity in agricultural landscapes. Grass field margins enriched with wildflowers typically out-perform grass-only margins in terms of increasing insect abundance and diversity. However, the effect of wildflower enrichment on moths remains largely unstudied. Here, the relative importance of larval hostplants and nectar resources for adult moths within AES field margins are investigated. Two treatments and a control were compared: (i) a plain grass mix, the control, (ii) a grass mix enriched with only moth-pollinated flowers, and (iii) a grass mix enriched with 13 wildflower species. Abundance, species richness and Shannon diversity were up to 1.4, 1.8 and 3.5 times higher, respectively, in the wildflower treatment compared to plain grass. The difference in diversity between treatments became greater in the second year. There was no difference in total abundance, richness or diversity between the plain grass treatment and grass enriched with moth-pollinated flowers. The increase in abundance and diversity in the wildflower treatment was due primarily to the provision of larval hostplants, with nectar provision playing a smaller role. The relative abundance of species whose larval hostplants included sown wildflowers increased in the second year, suggesting colonisation of the new habitat. Implications for insect conservation. We show that, at the farm scale, moth diversity can be greatly enhanced and abundance moderately enhanced by sowing diverse wildflower margins, providing these insects with both larval hostplants and floral resources, compared to grass-only margins. Supplementary Information: The online version contains supplementary material available at 10.1007/s10841-023-00469-9.

2.
Insect Conserv Divers ; 15(5): 496-509, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36247721

RESUMO

While agricultural intensification and habitat loss are cited as key drivers of moth decline, these alone cannot explain declines observed in UK woodlands - a habitat that has expanded in area since 1968.We quantified how moth communities changed across habitats and regions and determined how species traits interacted with habitat in predicting moth abundance change. We hypothesised that, in woodlands, species more vulnerable to shading and browsing by deer (species specialising on forbs, shrubs and shade-intolerant plants) had declined more severely than other species, and that moth decline in woodlands was more severe at sites more susceptible to deer damage.We modelled abundance, biomass, species richness and diversity from 1968 to 2016 and explored how these interacted with habitat and region. We also modelled the interaction between habitat and two moth species traits: larval feeding guild and shade-tolerance of hostplant.Moth declines were consistently highest in broadleaf woodland. Abundance, biomass, species richness and diversity declined significantly by -51%, -52%, -14% and -15% in woodlands, respectively, compared to national trends of -34%, -39%, -1% (non-significant) and +10%. Declines were no greater in woodlands more susceptible to deer browsing damage. Traits based analysis found no evidence that shading and intensive browsing by deer explained moth declines in woodland.Moth decline was more severe in broadleaf woodlands than in intensively managed farmlands. We found no evidence that deer browsing or increased shading has driven these trends: the primary cause of the decline of moths in woodlands remains unclear.

3.
Insect Conserv Divers ; 13(2): 115-126, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32215052

RESUMO

Although we have known anecdotally that insects have been declining in Great Britain for more than 100 years, insect declines have only been statistically estimated over the last 20 years. Estimation of the rate of those declines is still hotly debated, fuelled by a lack of standardised, systematically collected data.More than 24 million individual moths and aphids collected from 112 light traps and 25 12.2 m suction-traps, respectively, were analysed using mixed models. Our objective was to estimate the long-term trends in both groups based on annual totals recorded every year between 1969 and 2016.The models showed that two paradigms existed: Over 47 years, long-term linear trends showed that moths had declined significantly by -31%, but short-term trends indicated that there were periods of significant decline and recovery in most decades since the 1960s. Conversely, despite aphid annual totals fluctuating widely, this group was in a steady state over the long-term, with a non-significant decline of -7.6%. Sensitivity analysis revealed that moth trends were not driven by a group of abundant species, but the sign of the overall aphid trends may have been driven by three of the most abundant species.The spatial extent of moth trends suggests that they are extremely heterogeneous. Uniquely, moth declines were different among several habitat types, with robust significant declines found in coastal, urban and woodland habitats, but notably not in agricultural, parkland and scrubland habitats. Conversely, aphid trends showed spatial synchrony extending to 338 km, albeit with local variation.

4.
Glob Chang Biol ; 23(7): 2641-2648, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28139040

RESUMO

White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night-time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three-year field experiment in which each of these lighting strategies was simulated in a previously artificial light naïve grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night-time lighting may ultimately require avoiding its use altogether.


Assuntos
Ecossistema , Pradaria , Iluminação , Animais , Besouros , Humanos , Luz , Dinâmica Populacional , Aranhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA