Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(12)2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-38140523

RESUMO

Raspberry plants, valued for their fruits, are vulnerable to a range of viruses that adversely affect their yield and quality. Utilizing high-throughput sequencing (HTS), we identified a novel virus, tentatively named raspberry enamovirus 1 (RaEV1), in three distinct raspberry plants. This study provides a comprehensive characterization of RaEV1, focusing on its genomic structure, phylogeny, and possible transmission routes. Analysis of nearly complete genomes from 14 RaEV1 isolates highlighted regions of variance, particularly marked by indel events. The evidence from phylogenetic and sequence analyses supports the classification of RaEV1 as a distinct species within the Enamovirus genus. Among the 289 plant and 168 invertebrate samples analyzed, RaEV1 was detected in 10.4% and 0.4%, respectively. Most detections occurred in plants that were also infected with other common raspberry viruses. The virus was present in both commercial and wild raspberries, indicating the potential of wild plants to act as viral reservoirs. Experiments involving aphids as potential vectors demonstrated their ability to acquire RaEV1 but not to successfully transmit it to plants.


Assuntos
Afídeos , Luteoviridae , Rubus , Vírus , Animais , Luteoviridae/genética , Filogenia , Doenças das Plantas
2.
Plant Dis ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37133341

RESUMO

Raspberries (Rubus idaeus L.), occurring in the temperate zone of the northern hemisphere and blackberries (R. fruticosus L.), cultivated and growing all over the world, are plant species of the family Rosaceae. These species are susceptible to phytoplasma infections, which cause Rubus stunt disease. It spreads uncontrolled by vegetative propagation of plants (Linck and Reineke 2019a) and by phloem-sucking insect vectors, especially Macropsis fuscula (Hemiptera: Cicadellidae) (de Fluiter and van der Meer, 1953; Linck and Reineke 2019b). During a survey in commercial field in June 2021, over 200 raspberry bushes cv Enrosadira exhibiting typical symptoms of Rubus stunt were observed in Central Bohemia. Symptoms included dieback, leaf yellowing/reddening, stunted growth, severe phyllody and fruit malformations. Most diseased plants were growing in the edge rows of the field (about 80%). No symptomatic plants were observed in the middle of the field. Similar symptoms were observed in private gardens in South Bohemia on raspberry cv Rutrago and blackberry (unknown cultivar) in June 2018 and August 2022, respectively. DNA was extracted using the DNeasy Plant Mini Kit (Qiagen GmbH, Hilden, Germany) from flower stems and parts affected by phyllody of seven symptomatic plants as well as flower stems, leaf midribs, and petioles of five asymptomatic field plants. The DNA extracts were analyzed by a nested polymerase chain reaction assay using universal phytoplasma P1A/P7A primers followed by R16F2m/R1m and the group-specific R16(V)F1/R1 primers (Bertaccini et al. 2019). All samples from the symptomatic plants yielded an amplicon of expected size, while no product was amplified in asymptomatic plants. The P1A/P7A amplicons from three selected plants (two raspberries and one blackberry, each from different location) were cloned and bi-directionally Sanger sequenced (GenBank Accession Nos.OQ520100-2). The sequences spanned nearly full-length of 16S rRNA gene, 16S-23S rRNA intergenic spacer, tRNA-Ile gene, and a partial 23S rRNA gene. BLASTn search revealed the highest sequence identity (99.8-99.9%, query coverage 100%) to 'Candidatus Phytoplasma rubi' strain RS (GenBank Accession No. CP114006). To further characterize the 'Ca. P. rubi' strains, all these three samples were subjected to multigene sequence analysis. Sequences from a major portion of the tuf, rplV-rpsC, rpsH-rplR, uvrB-degV, and rplO-SecY-map genes (Acc. Nos. OQ506112-26) were obtained as described previously (Fránová et al. 2016). Comparison to GenBank sequences confirmed their highest identity (99.6-100%, query coverage 100%) with 'Ca. P. rubi' RS strain, regardless of their geographic location and host (raspberry or blackberry). Recently, Bertaccini et al. (2022) suggested the 98,65 % 'Ca. Phytoplasma' strain identity threshold within 16Sr RNA sequences. In this survey, all three strains sequenced shared ≥99.73% sequence identity of the analysed 16S rRNA gene sequences and the high identity in the other genes with the reference 'Ca. P. rubi' RS strain. To our knowledge, this is the first report of Rubus stunt disease in the Czech Republic as well as the first molecular identification and characterization of 'Ca. P. rubi' from raspberry and blackberry in our country. As Rubus stunt disease is of great economic importance (Linck and Reineke 2019a), the pathogen detection and prompt removal of the diseased shrubs are essential to mitigating the spread and impact of the disease.

3.
Viruses ; 14(3)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336978

RESUMO

The estimated global production of raspberry from year 2016 to 2020 averaged 846,515 tons. The most common cultivated Rubus spp. is European red raspberry (Rubus idaeus L. subsp. idaeus). Often cultivated for its high nutritional value, the red raspberry (Rubus idaeus) is susceptible to multiple viruses that lead to yield loss. These viruses are transmitted through different mechanisms, of which one is invertebrate vectors. Aphids and nematodes are known to be vectors of specific raspberry viruses. However, there are still other potential raspberry virus vectors that are not well-studied. This review aimed to provide an overview of studies related to this topic. All the known invertebrates feeding on raspberry were summarized. Eight species of aphids and seven species of plant-parasitic nematodes were the only proven raspberry virus vectors. In addition, the eriophyid mite, Phyllocoptes gracilis, has been suggested as the natural vector of raspberry leaf blotch virus based on the current available evidence. Interactions between vector and non-vector herbivore may promote the spread of raspberry viruses. As a conclusion, there are still multiple aspects of this topic that require further studies to get a better understanding of the interactions among the viral pathogens, invertebrate vectors, and non-vectors in the raspberry agroecosystem. Eventually, this will assist in development of better pest management strategies.


Assuntos
Afídeos , Nematoides , Rubus , Vírus , Animais , Vírus/genética
4.
Plant Dis ; : PDIS10212208PDN, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34962414
6.
Plants (Basel) ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34579422

RESUMO

Cryopreservation is considered an ideal strategy for the long-term preservation of plant genetic resources. Significant progress was achieved over the past several decades, resulting in the successful cryopreservation of the genetic resources of diverse plant species. Cryopreservation procedures often employ in vitro culture techniques and require the precise control of several steps, such as the excision of explants, preculture, osmo- and cryoprotection, dehydration, freeze-thaw cycle, unloading, and post-culture for the recovery of plants. These processes create a stressful environment and cause reactive oxygen species (ROS)-induced oxidative stress, which is detrimental to the growth and regeneration of tissues and plants from cryopreserved tissues. ROS-induced oxidative stresses were documented to induce (epi)genetic and somatic variations. Therefore, the development of true-to-type regenerants of the source germplasm is of primary concern in the application of plant cryopreservation technology. The present article provides a comprehensive assessment of epigenetic and genetic integrity, metabolic stability, and field performance of cryopreserved plants developed in the past decade. Potential areas and the directions of future research in plant cryopreservation are also proposed.

7.
Arch Virol ; 166(12): 3513-3566, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34463877

RESUMO

In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Assuntos
Mononegavirais , Vírus , Humanos
8.
Phytopathology ; 110(1): 68-79, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31631806

RESUMO

High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.


Assuntos
Genoma Viral , Vírus do Mosaico , Vírus de Plantas , Animais , Grão Comestível/virologia , Genoma Viral/genética , Hemípteros/virologia , Vírus do Mosaico/genética , Noruega , Doenças das Plantas/virologia , Vírus de Plantas/genética , Suécia
9.
Appl Microbiol Biotechnol ; 102(24): 10743-10754, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30291368

RESUMO

Availability of and easy access to diverse plant viruses and viroids is a prerequisite in applied and basic studies related to viruses and viroids. Long-term preservation of viruses and viroids is difficult. A protocol was described for long-term preservation of potato leafroll virus (PLRV), potato virus S (PVS), and potato spindle tuber viroid (PSTVd) in cryopreserved shoot tips of potato cv. Zihuabai. Shoot regrowth levels following cryopreservation were higher in 1.5 mm-shoot tips (58-60%) than in 0.5-mm-ones (30-38%). All shoots recovered from 0.5-mm-shoot tips were PVS- and PSTVd-preserved, but none of them were PLRV-preserved. Cryopreservation of 1.5-mm-shoot tips resulted in 35% and 100% of PLRV- and PVS- and PSTVd-preserved shoots. Studies on cell survival patterns and virus localization provided explanations to the varying PLRV-preservation frequencies produced by cryopreservation of the two sizes of shoot tips. Although micropropagation efficiencies were low after 12 weeks of subculture following cryopreservation, similar efficiencies were obtained after 16 weeks of subculture in pathogen-preserved shoots recovered from cryopreservation, compared with the diseased in vitro stock shoots (the control). Pathogen concentrations in the three pathogens-preserved shoots analyzed by qRT-PCR were similar to those in micropropagated shoots. The three pathogens cryopreserved in shoot tips were readily transmitted by grafting and mechanical inoculation to potato plants. PLRV, PVS, and PSTVd represent a diverse range of plant viruses and viroid in terms of taxonomy and infectious ability. Therefore, shoot tip cryopreservation opens a new avenue for long-term preservation of the virus and viroid.


Assuntos
Carlavirus , Luteoviridae , Brotos de Planta/virologia , Solanum tuberosum/virologia , Viroides , Carlavirus/genética , Regulação Viral da Expressão Gênica , Luteoviridae/genética , Doenças das Plantas/virologia , Patologia Vegetal , Brotos de Planta/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Viroides/genética
10.
Methods Mol Biol ; 1815: 257-268, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29981127

RESUMO

Virus diseases have been a great threat to production of economically important crops. In practice, the use of virus-free planting material is an effective strategy to control viral diseases. Cryotherapy, developed based on cryopreservation, is a novel plant biotechnology tool for virus eradication. Comparing to the traditional meristem culture for virus elimination, cryotherapy resulted in high efficiency of pathogen eradication. In general, cryotherapy includes seven major steps: (1) introduction of infected plant materials into in vitro cultures, (2) shoot tip excision, (3) tolerance induction of explants to dehydration and subsequent freezing in liquid nitrogen (LN), (4) a short-time treatment of explants in LN, (5) warming and post-culture for regeneration, (6) re-establishment of regenerated plants in greenhouse conditions, and (7) virus indexing.


Assuntos
Produtos Agrícolas/economia , Produtos Agrícolas/virologia , Criopreservação/métodos , Vírus de Plantas/isolamento & purificação , Eletroforese em Gel de Ágar , Doenças das Plantas/virologia , Brotos de Planta/virologia , Reação em Cadeia da Polimerase em Tempo Real , Solo
11.
Front Microbiol ; 7: 224, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973607

RESUMO

Chrysanthemum stunt viroid (CSVd) can infect Argyranthemum and cause serious economic loss. Low temperature treatment combined with meristem culture has been applied to eradicate viroids from their hosts, but without success in eliminating CSVd from diseased Argyranthemum. The objectives of this work were to investigate (1) the effect of low temperature treatment combined with meristem culture on elimination of CSVd, (2) the effect of low temperature treatment on CSVd distribution pattern in shoot apical meristem (SAM), and (3) CSVd distribution in flowers and stems of two infected Argyranthemum cultivars. After treatment with low temperature combined with meristem tip culture, two CSVd-free plants were found in 'Border Dark Red', but none in 'Yellow Empire'. With the help of in situ hybridization, we found that CSVd distribution patterns in the SAM showed no changes in diseased 'Yellow Empire' following 5°C treatment, compared with non-treated plants. However, the CSVd-free area in SAM was enlarged in diseased 'Border Dark Red' following prolonged 5°C treatment. Localization of CSVd in the flowers and stems of infected 'Border Dark Red' and 'Yellow Empire' indicated that seeds could not transmit CSVd in these two cultivars, and CSVd existed in phloem. Results obtained in the study contributed to better understanding of the distribution of CSVd in systemically infected plants and the combination of low temperature treatment and meristem tip culture for production of viroid-free plants.

12.
Front Plant Sci ; 6: 53, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763000

RESUMO

Chrysanthemum stunt viroid (CSVd) is a damaging pathogen attacking Argyranthemum plants. Our study attempted to reveal distribution patterns of CSVd in shoot apical meristems (SAM) and to explore reasons for differential ability of CSVd to invade SAM of selected Argyranthemum cultivars. Symptom development was also observed on greenhouse-grown Argyranthemum plants. Viroid localization using in situ hybridization revealed that the ability of CSVd to invade SAM differed among cultivars. In diseased 'Yellow Empire' and 'Butterfly', CSVd was found in all tissues including the uppermost cell layers in the apical dome (AD) and the youngest leaf primordia 1 and 2. In diseased 'Border Dark Red' and 'Border Pink', CSVd was detected in the lower part of the AD and elder leaf primordia, leaving the upper part of the AD, and leaf primordia 1 and 2 free of viroid. Histological observations and transmission electron microscopy showed similar developmental patterns of vascular tissues and plasmodesmata (PD) in the SAM of 'Yellow Empire' and 'Border Dark Red', while immunolocalization studies revealed a major difference in the number of callose (ß-1, 3-glucan) particles deposited at PD in SAM. A lower number of callose particles were found deposited at PD of SAM of 'Yellow Empire' than 'Border Dark Red'. This difference is most likely responsible for the differences in ability of CSVd to invade SAM among Argyranthemum cultivars.

13.
J Biotechnol ; 184: 47-55, 2014 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-24858678

RESUMO

We previously reported successful cryopreservation of shoot tips of potato 'Zihuabai' by three vitrification-based protocols. In the present study, cryo-injury to shoot tips and genetic stability in regenerants recovered from cryopreserved shoot tips by the three vitrification-based protocols were further investigated. The results showed that sucrose preculture caused no obviously different injuries, while dehydration with plant vitrification solution 2 (PVS2) was the step causing major damage to cells of shoot tips, regardless of the cryogenic procedures. Compared with droplet-vitrification and encapsulation-vitrification, vitrification caused the most severe injury to cells of the shoot tips, thus resulting in much longer time duration for shoot recovery and much lower shoot regrowth rate. Cells in apical dome and the youngest leaf primordia were able to survive and subsequently some of them regrew into shoots following all three vitrification-based cryopreservation procedures. Analyses using inter-simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) markers in shoots regrown from all three vitrification-based protocols did not find any polymorphic bands. The results reported here suggest that vitrification-based cryo-procedures can be considered promising methods for long-term preservation of potato genetic resources.


Assuntos
Criopreservação , Brotos de Planta/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Vitrificação , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Instabilidade Genômica , Brotos de Planta/genética , Solanum tuberosum/genética
14.
PLoS One ; 8(1): e53377, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308204

RESUMO

Euphorbia pulcherrima, poinsettia, is a non-food and non-feed vegetatively propagated ornamental plant. Appropriate plant height is one of the most important traits in poinsettia production and is commonly achieved by application of chemical growth retardants. To produce compact poinsettia plants with desirable height and reduce the utilization of growth retardants, the Arabidopsis SHORT INTERNODE (AtSHI) gene controlled by the cauliflower mosaic virus 35S promoter was introduced into poinsettia by Agrobacterium-mediated transformation. Three independent transgenic lines were produced and stable integration of transgene was verified by PCR and Southern blot analysis. Reduced plant height (21-52%) and internode lengths (31-49%) were obtained in the transgenic lines compared to control plants. This correlates positively with the AtSHI transcript levels, with the highest levels in the most dwarfed transgenic line (TL1). The indole-3-acetic acid (IAA) content appeared lower (11-31% reduction) in the transgenic lines compared to the wild type (WT) controls, with the lowest level (31% reduction) in TL1. Total internode numbers, bract numbers and bract area were significantly reduced in all transgenic lines in comparison with the WT controls. Only TL1 showed significantly lower plant diameter, total leaf area and total dry weight, whereas none of the AtSHI expressing lines showed altered timing of flower initiation, cyathia abscission or bract necrosis. This study demonstrated that introduction of the AtSHI gene into poinsettia by genetic engineering can be an effective approach in controlling plant height without negatively affecting flowering time. This can help to reduce or avoid the use of toxic growth retardants of environmental and human health concern. This is the first report that AtSHI gene was overexpressed in poinsettia and transgenic poinsettia plants with compact growth were produced.


Assuntos
Proteínas de Arabidopsis/genética , Caulimovirus/genética , Euphorbia/genética , Expressão Gênica , Genes de Plantas , Folhas de Planta/genética , Plantas Geneticamente Modificadas/anatomia & histologia , Fatores de Transcrição/genética , Agrobacterium tumefaciens/genética , Euphorbia/anatomia & histologia , Flores/anatomia & histologia , Flores/genética , Germinação/genética , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/anatomia & histologia , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Transformação Genética , Transgenes
15.
Arch Virol ; 153(7): 1347-51, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18504521

RESUMO

An infectious cDNA clone of a Norwegian isolate of Poinsettia mosaic virus (PnMV) was generated. It consisted of 6,098 nucleotides and encoded a polyprotein of 219.5 kDa. Sequence comparisons indicated that this isolate shared 98.6% (nucleotide) and 97.1% (amino acid) identity with the previously sequenced isolate from Germany. RNA transcripts derived from this cDNA were infectious in Nicotiana benthamiana. However, plants did not present typical PnMV symptoms. Furthermore, RNA transcripts from this cDNA clone were not infectious in poinsettia. Serial propagation of this cDNA clone in N. benthamiana plants restored symptom induction in this host but did not re-establish infectivity in poinsettia.


Assuntos
DNA Complementar/genética , Doenças das Plantas/virologia , RNA Viral/genética , Tymoviridae/genética , Tymoviridae/isolamento & purificação , Euphorbia/virologia , Dados de Sequência Molecular , Noruega , Filogenia , Poliproteínas/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Nicotiana/virologia , Proteínas Virais/genética
16.
Plant Cell Rep ; 27(6): 1027-38, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18327592

RESUMO

Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated.


Assuntos
Euphorbia/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , RNA Catalítico/genética , Transformação Genética , Tymoviridae/patogenicidade , Agrobacterium tumefaciens/genética , Euphorbia/embriologia , Euphorbia/virologia , Técnicas de Transferência de Genes , Plantas Geneticamente Modificadas/embriologia , Plantas Geneticamente Modificadas/virologia , Interferência de RNA , Transgenes , Tymoviridae/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA