Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408490

RESUMO

In this work, porous carbons were prepared by 3D printing formulations based on acrylate-tannin resins. As the properties of these carbons are highly dependent on the composition of the precursor, it is essential to understand this effect to optimise them for a given application. Thus, experimental design was applied, for the first time, to carbon 3D printing. Using a rationalised number of experiments suggested by a Scheffé mixture design, the experimental responses (the carbon yield, compressive strength, and Young's modulus) were modelled and predicted as a function of the relative proportions of the three main resin ingredients (HDDA, PETA, and CN154CG). The results revealed that formulations containing a low proportion of HDDA and moderate amounts of PETA and CN154CG gave the best properties. Thereby, the optimised carbon structures had a compressive strength of over 5.2 MPa and a Young's modulus of about 215 MPa. The reliability of the model was successfully validated through optimisation tests, proving the value of experimental design in developing customisable tannin-based porous carbons manufactured by stereolithography.


Assuntos
Carbono , Taninos , Acrilatos , Porosidade , Impressão Tridimensional , Reprodutibilidade dos Testes , Projetos de Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA