Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39246744

RESUMO

The aryl hydrocarbon receptor (AHR) is a versatile ligand-dependent transcription factor involved in diverse biological processes, from metabolic adaptations to immune system regulation. Recognising its pivotal role in cancer immunology, AHR has become a promising target for cancer therapy. Here we report the discovery and structure-activity relationship studies of novel AHR antagonists. The potential AHR antagonists were identified via homology model-based high-throughput virtual screening and were experimentally verified in a luciferase reporter gene assay. The identified pyrazolo[1,5-a]pyrimidine-based AHR antagonist 7 (IC50 = 650 nM) was systematically optimised to elucidate structure-activity relationships and reach low nanomolar AHR antagonistic potency (7a, IC50 = 31 nM). Overall, the findings presented here provide new starting points for AHR antagonist development and offer insightful information on AHR antagonist structure-activity relationships.

2.
ChemMedChem ; : e202400618, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258386

RESUMO

Coronaviruses, including SARS-CoV-2, possess an mRNA 5' capping apparatus capable of mimicking the natural eukaryotic capping signature. Two SAM-dependent methylating enzymes play important roles in this process: nsp14 methylates the N7 of the guanosine cap, and nsp16-nsp10 methylates the 2'-O- of subsequent nucleotides of viral mRNA. The 2'-O-methylation performed by nsp16-nsp10 is crucial for the escape of the viral RNA from innate immunity. Inhibition of this enzymatic activity has been proposed as a way to combat coronaviruses. In this study, we employed X-ray crystallography to analyze the binding of the SAM analogues to the active site of nsp16-nsp10. We obtained eleven 3D crystal structures of the nsp16-nsp10 complexes with SAM-derived inhibitors, demonstrated different conformations of the methionine substituting part of the molecules, and confirmed that simultaneous dual-site targeting of both SAM and RNA sites correlates with higher inhibitory potential.

3.
PLoS One ; 19(8): e0307226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190764

RESUMO

Sampling rare events in proteins is crucial for comprehending complex phenomena like cryptic pocket opening, where transient structural changes expose new binding sites. Understanding these rare events also sheds light on protein-ligand binding and allosteric communications, where distant site interactions influence protein function. Traditional unbiased molecular dynamics simulations often fail to sample such rare events, as the free energy barrier between metastable states is large relative to the thermal energy. This renders these events inaccessible on the timescales typically simulated by unbiased molecular dynamics, limiting our understanding of these critical processes. In this paper, we proposed a novel unsupervised learning approach termed as slow feature analysis (SFA) which aims to extract slowly varying features from high-dimensional temporal data. SFA trained on small unbiased molecular dynamics simulations launched from AlphaFold generated conformational ensembles manages to capture rare events governing cryptic pocket opening, protein-ligand binding, and allosteric communications in a kinase. Metadynamics simulations using SFA as collective variables manage to sample 'deep' cryptic pocket opening within a few hundreds of nanoseconds which was beyond the reach of microsecond long unbiased molecular dynamics simulations. SFA augmented metadynamics also managed to capture conformational plasticity of protein upon ligand binding/unbinding and provided novel insights into allosteric communication in receptor-interacting protein kinase 2 (RIPK2) which dictates protein-protein interaction. Taken together, our results show how SFA acts as a dimensionality reduction tool which bridges the gap between AlphaFold, molecular dynamics simulation and metadynamics in context of capturing rare events in biomolecules, extending the scope of structure-based drug discovery in the era of AlphaFold.


Assuntos
Simulação de Dinâmica Molecular , Ligação Proteica , Ligantes , Regulação Alostérica , Sítios de Ligação , Conformação Proteica , Proteínas/química , Proteínas/metabolismo
4.
PLoS One ; 19(4): e0296995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558084

RESUMO

Emerging resistance to existing antimalarial drugs drives the search for new antimalarials, and protein translation is a promising pathway to target. Threonyl t-RNA synthetase (ThrRS) is one of the enzymes involved in this pathway, and it has been validated as an anti-malarial drug target. Here, we present 9 structurally diverse low micromolar Plasmodium falciparum ThrRS inhibitors that were identified using high-throughput virtual screening (HTVS) and were verified in a FRET enzymatic assay. Salicylic acid-based compound (LE = 0.34) was selected as a most perspective hit and was subjected to hit-to-lead optimisation. A total of 146 hit analogues were synthesised or obtained from commercial vendors and were tested. Structure-activity relationship study was supported by the crystal structure of the complex of a salicylic acid analogue with a close homologue of the plasmodium target, E. coli ThrRS (EcThrRS). Despite the availability of structural information, the hit identified via virtual screening remained one of the most potent PfThrRS inhibitors within this series. However, the compounds presented herein provide novel scaffolds for ThrRS inhibitors, which could serve as starting points for further medicinal chemistry projects targeting ThrRSs or structurally similar enzymes.


Assuntos
Antimaláricos , Malária , Treonina-tRNA Ligase , Humanos , Treonina-tRNA Ligase/química , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Escherichia coli/genética , Relação Estrutura-Atividade , Plasmodium falciparum/genética , Antimaláricos/farmacologia , Ácido Salicílico/farmacologia , RNA de Transferência
5.
Nat Commun ; 15(1): 965, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302480

RESUMO

Protein misfolding can generate toxic intermediates, which underlies several devastating diseases, such as Alzheimer's disease (AD). The surface of AD-associated amyloid-ß peptide (Aß) fibrils has been suggested to act as a catalyzer for self-replication and generation of potentially toxic species. Specifically tailored molecular chaperones, such as the BRICHOS protein domain, were shown to bind to amyloid fibrils and break this autocatalytic cycle. Here, we identify a site on the Aß42 fibril surface, consisting of three C-terminal ß-strands and particularly the solvent-exposed ß-strand stretching from residues 26-28, which is efficiently sensed by a designed variant of Bri2 BRICHOS. Remarkably, while only a low amount of BRICHOS binds to Aß42 fibrils, fibril-catalyzed nucleation processes are effectively prevented, suggesting that the identified site acts as a catalytic aggregation hotspot, which can specifically be blocked by BRICHOS. Hence, these findings provide an understanding how toxic nucleation events can be targeted by molecular chaperones.


Assuntos
Doença de Alzheimer , Amiloide , Humanos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Domínios Proteicos , Chaperonas Moleculares/metabolismo , Fragmentos de Peptídeos/metabolismo
6.
ACS Med Chem Lett ; 15(1): 76-80, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38229753

RESUMO

While Plasmodium falciparum threonyl tRNA synthetase (PfThrRS) has clearly been validated as a prospective antimalarial drug target, the number of known inhbitors of this enzyme is still limited. In order to expand the chemotypes acting as inhibitors of PfThrRS, a set of fragments were designed which incorporated bioisosteres of the N-acylphosphate moiety of the aminoacyladenylate as an intermediate of an enzymatic reaction. N-Acyl sulfamate- and N-acyl benzenethiazolsulfonamide-based fragments 9a and 9k were identified as inhibitors of the PfThrRSby biochemical assay at 100 µM concentration. These fragments were then developed into potent PfThrRS inhibitors (10a,b and 11) by linking them with an amino pyrimidine as a bioisostere of adenine in the enzymatic reaction intermediate.

7.
J Chem Inf Model ; 63(21): 6890-6899, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37801405

RESUMO

Predicting the interaction modes and binding affinities of virtual compound libraries is of great interest in drug development. It reduces the cost and time of lead compound identification and selection. Here we apply path-based metadynamics simulations to characterize the binding of potential inhibitors to the Plasmodium falciparum aspartic protease plasmepsin V (plm V), a validated antimalarial drug target that has a highly mobile binding site. The potential plm V binders were identified in a high-throughput virtual screening (HTVS) campaign and were experimentally verified in a fluorescence resonance energy transfer (FRET) assay. Our simulations allowed us to estimate compound binding energies and revealed relevant states along binding/unbinding pathways in atomistic resolution. We believe that the method described allows the prioritization of compounds for synthesis and enables rational structure-based drug design for targets that undergo considerable conformational changes upon inhibitor binding.


Assuntos
Antimaláricos , Antimaláricos/farmacologia , Antimaláricos/química , Sítios de Ligação , Ácido Aspártico Endopeptidases/química , Plasmodium falciparum , Proteínas de Protozoários/metabolismo , Inibidores de Proteases/química
8.
J Med Chem ; 66(15): 10658-10680, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37505188

RESUMO

The Plasmodium falciparum aspartic protease plasmepsin X (PMX) is essential for the egress of invasive merozoite forms of the parasite. PMX has therefore emerged as a new potential antimalarial target. Building on peptidic amino alcohols originating from a phenotypic screening hit, we have here developed a series of macrocyclic analogues as PMX inhibitors. Incorporation of an extended linker between the S1 phenyl group and S3 amide led to a lead compound that displayed a 10-fold improved PMX inhibitory potency and a 3-fold improved half-life in microsomal stability assays compared to the acyclic analogue. The lead compound was also the most potent of the new macrocyclic compounds in in vitro parasite growth inhibition. Inhibitor 7k cleared blood-stage P. falciparum in a dose-dependent manner when administered orally to infected humanized mice. Consequently, lead compound 7k represents a promising orally bioavailable molecule for further development as a PMX-targeting antimalarial drug.


Assuntos
Antimaláricos , Peptidomiméticos , Camundongos , Animais , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Peptidomiméticos/farmacologia , Peptidomiméticos/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Ácido Aspártico Endopeptidases , Plasmodium falciparum/metabolismo , Proteínas de Protozoários
9.
J Am Chem Soc ; 145(22): 12066-12080, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227050

RESUMO

While nuclear magnetic resonance (NMR) is regarded as a reference in fragment-based drug design, its implementation in a high-throughput manner is limited by its lack of sensitivity resulting in long acquisition times and high micromolar sample concentrations. Several hyperpolarization approaches could, in principle, improve the sensitivity of NMR also in drug research. However, photochemically induced dynamic nuclear polarization (photo-CIDNP) is the only method that is directly applicable in aqueous solution and agile for scalable implementation using off-the-shelf hardware. With the use of photo-CIDNP, this work demonstrates the detection of weak binders in the millimolar affinity range using low micromolar concentrations down to 5 µM of ligand and 2 µM of target, thereby exploiting the photo-CIDNP-induced polarization twice: (i) increasing the signal-to-noise by one to two orders in magnitude and (ii) polarization-only of the free non-bound molecule allowing identification of binding by polarization quenching, yielding another factor of hundred in time when compared with standard techniques. The interaction detection was performed with single-scan NMR experiments of a duration of 2 to 5 s. Taking advantage of the readiness of photo-CIDNP setup implementation, an automated flow-through platform was designed to screen samples at a screening rate of 1500 samples per day. Furthermore, a 212 compounds photo-CIDNP fragment library is presented, opening an avenue toward a comprehensive fragment-based screening method.

10.
Molecules ; 28(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36677825

RESUMO

SARS-CoV-2 nsp14 guanine-N7-methyltransferase plays an important role in the viral RNA translation process by catalyzing the transfer of a methyl group from S-adenosyl-methionine (SAM) to viral mRNA cap. We report a structure-guided design and synthesis of 3-(adenosylthio)benzoic acid derivatives as nsp14 methyltransferase inhibitors resulting in compound 5p with subnanomolar inhibitory activity and improved cell membrane permeability in comparison with the parent inhibitor. Compound 5p acts as a bisubstrate inhibitor targeting both SAM and mRNA-binding pockets of nsp14. While the selectivity of 3-(adenosylthio)benzoic acid derivatives against human glycine N-methyltransferase was not improved, the discovery of phenyl-substituted analogs 5p,t may contribute to further development of SARS-CoV-2 nsp14 bisubstrate inhibitors.


Assuntos
Antivirais , Metiltransferases , SARS-CoV-2 , Metilação , Metiltransferases/antagonistas & inibidores , RNA Mensageiro/genética , RNA Viral/genética , S-Adenosilmetionina/química , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/metabolismo , Antivirais/farmacologia
11.
J Chem Inf Model ; 62(13): 3263-3273, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35712895

RESUMO

Selectivity is a major issue in the development of drugs targeting pathogen aspartic proteases. Here, we explore the selectivity-determining factors by studying specifically designed malaria aspartic protease (plasmepsin) open-flap inhibitors. Metadynamics simulations are used to uncover the complex binding/unbinding pathways of these inhibitors and describe the critical transition states in atomistic resolution. The simulation results are compared with experimentally determined enzymatic activities. Our findings demonstrate that plasmepsin inhibitor selectivity can be achieved by targeting the flap loop with hydrophobic substituents that enable ligand binding under the flap loop, as such a behavior is not observed for several other aspartic proteases. The ability to estimate the selectivity of compounds before they are synthesized is of considerable importance in drug design; therefore, we expect that our approach will be useful in selective inhibitor designs against not only aspartic proteases but also other enzyme classes.


Assuntos
Antimaláricos , Ácido Aspártico Endopeptidases , Plasmodium falciparum , Inibidores de Proteases , Antimaláricos/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Simulação por Computador , Desenho de Fármacos , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas de Protozoários/química
12.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35743221

RESUMO

S100A9 is a pro-inflammatory protein that co-aggregates with other proteins in amyloid fibril plaques. S100A9 can influence the aggregation kinetics and amyloid fibril structure of alpha-synuclein (α-syn), which is involved in Parkinson's disease. Currently, there are limited data regarding their cross-interaction and how it influences the aggregation process. In this work, we analyzed this interaction using solution 19F and 2D 15N-1H HSQC NMR spectroscopy and studied the aggregation properties of these two proteins. Here, we show that α-syn interacts with S100A9 at specific regions, which are also essential in the first step of aggregation. We also demonstrate that the 4-fluorophenylalanine label in alpha-synuclein is a sensitive probe to study interaction and aggregation using 19F NMR spectroscopy.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Calgranulina B , Humanos , Espectroscopia de Ressonância Magnética/métodos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
13.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34959647

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses mRNA capping to evade the human immune system. The cap formation is performed by the SARS-CoV-2 mRNA cap methyltransferases (MTases) nsp14 and nsp16, which are emerging targets for the development of broad-spectrum antiviral agents. Here, we report results from high-throughput virtual screening against these two enzymes. The docking of seven million commercially available drug-like compounds and S-adenosylmethionine (SAM) co-substrate analogues against both MTases resulted in 80 virtual screening hits (39 against nsp14 and 41 against nsp16), which were purchased and tested using an enzymatic homogeneous time-resolved fluorescent energy transfer (HTRF) assay. Nine compounds showed micromolar inhibition activity (IC50 < 200 µM). The selectivity of the identified inhibitors was evaluated by cross-checking their activity against human glycine N-methyltransferase. The majority of the compounds showed poor selectivity for a specific MTase, no cytotoxic effects, and rather poor cell permeability. Nevertheless, the identified compounds represent good starting points that have the potential to be developed into efficient viral MTase inhibitors.

14.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502545

RESUMO

Prion diseases are associated with conformational conversion of cellular prion protein into a misfolded pathogenic form, which resembles many properties of amyloid fibrils. The same prion protein sequence can misfold into different conformations, which are responsible for variations in prion disease phenotypes (prion strains). In this work, we use atomic force microscopy, FTIR spectroscopy and magic-angle spinning NMR to devise structural models of mouse prion protein fibrils prepared in three different denaturing conditions. We find that the fibril core region as well as the structure of its N- and C-terminal parts is almost identical between the three fibrils. In contrast, the central part differs in length of ß-strands and the arrangement of charged residues. We propose that the denaturant ionic strength plays a major role in determining the structure of fibrils obtained in a particular condition by stabilizing fibril core interior-facing glutamic acid residues.


Assuntos
Amiloide/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Agregação Patológica de Proteínas/metabolismo , Sequência de Aminoácidos , Amiloide/química , Animais , Isótopos de Carbono/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Microscopia de Força Atômica/métodos , Isótopos de Nitrogênio/metabolismo , Proteínas Priônicas/química , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Relação Estrutura-Atividade
15.
ACS Med Chem Lett ; 12(7): 1102-1107, 2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34257831

RESUMO

Viral mRNA cap methyltransferases (MTases) are emerging targets for the development of broad-spectrum antiviral agents. In this work, we designed potential SARS-CoV-2 MTase Nsp14 and Nsp16 inhibitors by using bioisosteric substitution of the sulfonium and amino acid substructures of the cosubstrate S-adenosylmethionine (SAM), which serves as the methyl donor in the enzymatic reaction. The synthetically accessible target structures were prioritized using molecular docking. Testing of the inhibitory activity of the synthesized compounds showed nanomolar to submicromolar IC50 values for five compounds. To evaluate selectivity, enzymatic inhibition of the human glycine N-methyltransferase involved in cellular SAM/SAH ratio regulation was also determined, which indicated that the discovered compounds are nonselective inhibitors of the studied MTases with slight selectivity for Nsp16. No cytotoxic effects were observed; however, this is most likely a result of the poor cell permeability of all evaluated compounds.

16.
ACS Med Chem Lett ; 11(11): 2146-2150, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33214822

RESUMO

Investigation of the trans-fluorine effect on the hydrolysis rate of diethyl 2-fluorocyclopropane-1,1-dicarboxylate provides synthetic access to both diastereomers of the fluorocyclopropyl analog of cabozantinib, a c-Met and VEGFR-2 inhibitor used as a first-line treatment for thyroid cancer and as a second-line treatment for renal cell carcinoma. Despite some known potent examples, there are only a few drug molecules that contain fluorocyclopropane moieties. Herein, we present a case study in which the monofluoro analog of a known cyclopropane-containing drug molecule displays an improved in vitro profile compared to the parent nonfluorinated structure. The fluorocyclopropane moiety may offer valuable fine-tuning options for lead optimization in drug discovery.

17.
Pathogens ; 9(10)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050189

RESUMO

BBA03 is a Borrelia burgdorferi outer surface lipoprotein encoded on one of the most conserved plasmids in Borrelia genome, linear plasmid 54 (lp54). Although many of its genes have been identified as contributing or essential for spirochete fitness in vivo, the majority of the proteins encoded on this plasmid have no known function and lack homologs in other organisms. In this paper, we report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBA03, which is known to provide a competitive advantage to the bacteria during the transmission from tick vector to mammalian host. BBA03 shows structural homology to other outer surface lipoproteins reflecting their genetic and evolutionary relatedness. Analysis of the structure reveals a pore in BBA03, which could potentially bind lipids.

18.
ACS Infect Dis ; 6(2): 186-194, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31724850

RESUMO

Because of its essential role as a bacterial virulence factor, enzyme sortase A (SrtA) has become an attractive target for the development of new antivirulence drugs against Gram-positive infections. Here we describe 27 compounds identified as covalent inhibitors of Staphylococcus aureus SrtA by screening a library of approximately 50 000 compounds using a FRET assay followed by NMR-based validation and binding reversibility analysis. Nineteen of these compounds displayed only moderate to weak cytotoxicity, with CC50 against NIH 3T3 mice fibroblast cells ranging from 12 to 740 µM. Analysis using covalent docking suggests that the inhibitors initially associate via hydrophobic interactions, followed by covalent bond formation between the SrtA active site cysteine and an electrophilic center of the inhibitor. The compounds represent good starting points that have the potential to be developed into broad spectrum antivirulence agents as exemplified by hit-to-lead optimization of one of the compounds.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos , Animais , Sítios de Ligação , Domínio Catalítico , Cisteína Endopeptidases , Descoberta de Drogas , Fibroblastos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Bibliotecas de Moléculas Pequenas , Staphylococcus aureus/enzimologia , Fatores de Virulência/antagonistas & inibidores
19.
J Med Chem ; 62(20): 8931-8950, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31062983

RESUMO

Malaria is a life-threatening infectious disease caused by Plasmodium parasites. Plasmepsins (proteolytic enzymes of the parasite) have been considered as promising targets for the development of antimalarial drugs. To date, much knowledge has been obtained regarding the interactions of inhibitors with plasmepsins, as well as the structure-activity relationships of the inhibitors. The discovery and characterization of the plasmepsin inhibitors that bind in open flap conformation have led to several inhibitor classes that show high selectivity over other human aspartic proteases. This Perspective addresses the flexibility of the plasmepsins that leads to inhibitor binding to the open flap conformation, summarizes known nonpeptidomimetic plasmepsin inhibitors, and discusses the role of the inhibitor flap pocket substituent.


Assuntos
Antimaláricos/farmacologia , Ácido Aspártico Proteases/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Animais , Antimaláricos/química , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/farmacologia , Descoberta de Drogas , Humanos , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 163: 344-352, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30529637

RESUMO

Following up the open initiative of anti-malarial drug discovery, a GlaxoSmithKline (GSK) phenotypic screening hit was developed to generate hydroxyethylamine based plasmepsin (Plm) inhibitors exhibiting growth inhibition of the malaria parasite Plasmodium falciparum at nanomolar concentrations. Lead optimization studies were performed with the aim of improving Plm inhibition selectivity versus the related human aspartic protease cathepsin D (Cat D). Optimization studies were performed using Plm IV as a readily accessible model protein, the inhibition of which correlates with anti-malarial activity. Guided by sequence alignment of Plms and Cat D, selectivity-inducing structural motifs were modified in the S3 and S4 sub-pocket occupying substituents of the hydroxyethylamine inhibitors. This resulted in potent anti-malarials with an up to 50-fold Plm IV/Cat D selectivity factor. More detailed investigation of the mechanism of action of the selected compounds revealed that they inhibit maturation of the P. falciparum subtilisin-like protease SUB1, and also inhibit parasite egress from erythrocytes. Our results indicate that the anti-malarial activity of the compounds is linked to inhibition of the SUB1 maturase plasmepsin subtype Plm X.


Assuntos
Antimaláricos/farmacologia , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Catepsina D/antagonistas & inibidores , Peptidomiméticos/farmacologia , Animais , Antimaláricos/química , Ácido Aspártico Endopeptidases/genética , Catepsina D/genética , Eritrócitos/parasitologia , Etilaminas/antagonistas & inibidores , Humanos , Peptidomiméticos/uso terapêutico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteases/química , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA