Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38617236

RESUMO

Sphingolipid activator protein B (saposin B; SapB) is an essential activator of globotriaosylceramide (Gb3) catabolism by α-galactosidase A. However, the manner by which SapB stimulates α-galactosidase A activity remains unknown. To uncover the molecular mechanism of SapB presenting Gb3 to α-galactosidase A, we subjected the fluorescent substrate globotriaosylceramide-nitrobenzoxidazole (Gb3-NBD) to a series of biochemical and structural assays involving SapB. First, we showed that SapB stably binds Gb3-NBD using a fluorescence equilibrium binding assay, isolates Gb3-NBD from micelles, and facilitates α-galactosidase A cleavage of Gb3-NBD in vitro. Second, we crystallized SapB in the presence of Gb3-NBD and validated the ligand-bound assembly. Third, we captured transient interactions between SapB and α-galactosidase A by chemical cross-linking. Finally, we determined the crystal structure of SapB bound to α-galactosidase A. These findings establish general principles for molecular recognition in saposin:hydrolase complexes and highlight the utility of NBD reporter lipids in saposin biochemistry and structural biology.

2.
Exp Eye Res ; 235: 109643, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37678729

RESUMO

Proteoglycan 4 (PRG4, lubricin) is a mucin-like glycoprotein present on the ocular surface that has both boundary lubricating and anti-inflammatory properties. Full-length recombinant human PRG4 (rhPRG4) has been shown to be clinically effective in improving signs and symptoms of dry eye disease (DED). In vitro, rhPRG4 has been shown to reduce inflammation-induced cytokine production and NFκB activity in corneal epithelial cells, as well as to bind to and inhibit MMP-9 activity. A different form of recombinant human lubricin (ECF843), produced from the same cell line as rhPRG4 but manufactured using a different process, was recently assessed in a DED clinical trial. However, ECF843 did not significantly improve signs or symptoms of DED compared to vehicle. Initial published characterization of ECF843 showed it had a smaller hydrodynamic diameter and was less negatively charged than native PRG4. Further examination of the structural and functional properties of ECF843 and rhPRG4 could contribute to the understanding of what led to their disparate clinical efficacy. Therefore, the objective of this study was to characterize and compare rhPRG4 and ECF843 in vitro, both biophysically and functionally. Hydrodynamic diameter and charge were measured by dynamic light scattering (DLS) and zeta potential, respectively. Size and molecular weight was determined for individual species by size exclusion chromatography (SEC) with in-line DLS and multi-angle light scattering (MALS). Bond structure was measured by Raman spectroscopy, and sedimentation properties were measured by analytical ultracentrifugation (AUC). Functionally, MMP-9 inhibition was measured using a commercial MMP-9 activity kit, coefficient of friction was measured using an established boundary lubrication test at a latex-glass interface, and collagen 1-binding ability was measured by quart crystal microbalance with dissipation (QCMD). Additionally, the ability of rhPRG4 and ECF843 to inhibit urate acid crystal formation and cell adhesion was assessed. ECF843 had a significantly smaller hydrodynamic diameter and was less negatively charged than rhPRG4, as assessed by DLS and zeta potential. Size was further explored with SEC-DLS-MALS, which indicated that while rhPRG4 had 3 main peaks, corresponding to monomer, dimer, and multimer as expected, ECF843 had 2 peaks that were similar in size and molecular weight compared to rhPRG4's monomer peak and a third peak that was significantly smaller in both size and molar mass than the corresponding peak of rhPRG4. Raman spectroscopy demonstrated that ECF843 had significantly more disulfide bonds, which are functionally determinant structures, relative to the carbon-carbon backbone compared to rhPRG4, and AUC indicated that ECF843 was more compact than rhPRG4. Functionally, ECF843 was significantly less effective at inhibiting MMP-9 activity and functioning as a boundary lubricant compared to rhPRG4, as well as being slower to bind to collagen 1. Additionally, ECF843 was significantly less effective at inhibiting urate acid crystal formation and at preventing cell adhesion. Collectively, these data demonstrate ECF843 and rhPRG4 are significantly different in both structure and function. Given that a protein's structure sets the foundation for its interactions with other molecules and tissues in vivo, which ultimately determine its function, these differences most likely contributed to the disparate DED clinical trial results.


Assuntos
Metaloproteinase 9 da Matriz , Ácido Úrico , Humanos , Glicoproteínas/metabolismo , Proteoglicanas/metabolismo , Carbono , Colágeno , Proteínas Recombinantes
3.
Inorg Chem Front ; 9(7): 1556-1564, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35756945

RESUMO

Decavanadate (V10O28 6- or V10) is a paradigmatic member of the polyoxidometalate (POM) family, which has been attracting much attention within both materials/inorganic and biomedical communities due to its unique structural and electrochemical properties. In this work we explored the utility of high-resolution electrospray ionization (ESI) mass spectrometry (MS) and ion exclusion chromatography LC/MS for structural analysis of V10 species in aqueous solutions. While ESI generates abundant molecular ions representing the intact V10 species, their isotopic distributions show significant deviations from the theoretical ones. A combination of high-resolution MS measurements and hydrogen/deuterium exchange allows these deviations to be investigated and interpreted as a result of partial reduction of V10. While the redox processes are known to occur in the ESI interface and influence the oxidation state of redox-active analytes, the LC/MS measurements using ion exclusion chromatography provide unequivocal evidence that the mixed-valence V10 species exist in solution, as extracted ion chromatograms representing V10 molecular ions at different oxidation states exhibit distinct elution profiles. The spontaneous reduction of V10 in solution is seen even in the presence of hydrogen peroxide and has not been previously observed. The susceptibility to reduction of V10 is likely to be shared by other redox active POMs. In addition to the molecular V10 ions, a high-abundance ionic signal for a V10O26 2- anion was displayed in the negative-ion ESI mass spectra. None of the V10O26 cations were detected in ESI MS, and only a low-abundance signal was observed for V10O26 anions with a single negative charge, indicating that the presence of abundant V10O26 2- anions in ESI MS reflects gas-phase instability of V10O28 anions carrying two charges. The gas-phase origin of the V10O26 2- anion was confirmed in tandem MS measurements, where mild collisional activation was applied to V10 molecular ions with an even number of hydrogen atoms (H4V10O28 2-), resulting in a facile loss of H2O molecules and giving rise to V10O26 2- as the lowest-mass fragment ion. Water loss was also observed for V10O28 anions carrying an odd number of hydrogen atoms (e.g., H5V10O28 -), followed by a less efficient and incomplete removal of an OH• radical, giving rise to both HV10O26 - and V10O25 - fragment ions. Importantly, at least one hydrogen atom was required for ion fragmentation in the gas phase, as no further dissociation was observed for any hydrogen-free V10 ionic species. The presented workflow allows a distinction to be readily made between the spectral features revealing the presence of non-canonical POM species in the bulk solution from those that arise due to physical and chemical processes occurring in the ESI interface and/or the gas phase.

4.
Front Mol Biosci ; 9: 785232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463966

RESUMO

The status of metabolomics as a scientific branch has evolved from proof-of-concept to applications in science, particularly in medical research. To comprehensively evaluate disease metabolomics, multiplatform approaches of NMR combining with mass spectrometry (MS) have been investigated and reported. This mixed-methods approach allows for the exploitation of each individual technique's unique advantages to maximize results. In this article, we present our findings from combined NMR and MS imaging (MSI) analysis of human lung and prostate cancers. We further provide critical discussions of the current status of NMR and MS combined human prostate and lung cancer metabolomics studies to emphasize the enhanced metabolomics ability of the multiplatform approach.

5.
J Am Soc Mass Spectrom ; 32(7): 1631-1637, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34006091

RESUMO

Analytical characterization of extensively modified proteins (such as haptenated carrier proteins in synthetic vaccines) remains a challenging task due to the high degree of structural heterogeneity. Native mass spectrometry (MS) combined with limited charge reduction allows these obstacles to be overcome and enables meaningful characterization of a heavily haptenated carrier protein CRM197 (inactivated diphtheria toxin conjugated with nicotine), a major component of a smoking cessation vaccine. The extensive conjugation results in a near-continuum distribution of ionic signal in electrospray ionization (ESI) mass spectra of haptenated CRM197 even after size-exclusion chromatographic fractionation. However, supplementing the ESI MS measurements with limited charge reduction of ionic populations selected within narrow m/z windows gives rise to well-resolved charge ladders, from which both masses and charge states of the ionic species can be readily deduced. Application of this technique to a research-grade material of CRM197/H7 conjugate not only reveals its marginal conformational stability (manifested by the appearance of high charge-density ions in ESI MS) but also establishes a role of the extent of haptenation as a major factor driving the loss of the higher order structure integrity. The unique information provided by native MS used in combination with limited charge reduction provides a strong argument for this technique to become a standard/required tool in the analytical arsenal in the field of biotechnology and biopharmaceutical analysis, where protein conjugates are becoming increasingly common.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/métodos , Vacinas Sintéticas/química , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Cromatografia em Gel , Nicotina/análogos & derivados , Nicotina/química , Conformação Proteica
6.
Anal Chem ; 93(7): 3337-3342, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33566581

RESUMO

Structural heterogeneity is a significant challenge complicating (and in some cases making impossible) electrospray ionization mass spectrometry (ESI MS) analysis of noncovalent complexes comprising structurally heterogeneous biopolymers. The broad mass distribution exhibited by such species inevitably gives rise to overlapping ionic signals representing different charge states, resulting in a continuum spectrum with no discernible features that can be used to assign ionic charges and calculate their masses. This problem can be circumvented by using limited charge reduction, which utilizes gas-phase chemistry to induce charge-transfer reactions within ionic populations selected within narrow m/z windows, thereby producing well-defined and readily interpretable charge ladders. However, the ionic signal in native MS typically populates high m/z regions of mass spectra, which frequently extend beyond the precursor ion isolation limits of most commercial mass spectrometers. While the ionic signal of single-chain proteins can be shifted to lower m/z regions simply by switching to a denaturing solvent, this approach cannot be applied to noncovalent assemblies due to their inherent instability under denaturing conditions. An alternative approach explored in this work relies on adding supercharging reagents to protein solutions as a means of increasing the extent of multiple charging of noncovalent complexes in ESI MS without compromising their integrity. This shifts the ionic signal down the m/z scale to the region where ion selection and isolation can be readily accomplished with a front-end quadrupole, followed by limited charge reduction of the isolated ionic population. The feasibility of the new approach is demonstrated using noncovalent complexes formed by hemoglobin with structurally heterogeneous haptoglobin.


Assuntos
Hemoglobinas , Espectrometria de Massas por Ionização por Electrospray , Íons , Solventes
7.
Anal Chem ; 92(11): 7565-7573, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32347711

RESUMO

Understanding molecular mechanisms governing interactions of glycosaminoglycans (such as heparin) with proteins remains challenging due to their enormous structural heterogeneity. Commonly accepted approaches seek to reduce the structural complexity by searching for "binding epitopes" within the limited subsets of short heparin oligomers produced either enzymatically or synthetically. A top-down approach presented in this work seeks to preserve the chemical diversity displayed by heparin by allowing the longer and structurally diverse chains to interact with the client protein. Enzymatic lysis of the protein-bound heparin chains followed by the product analysis using size exclusion chromatography with online mass spectrometry detection (SEC/MS) reveals the oligomers that are protected from lysis due to their tight association with the protein, and enables their characterization (both the oligomer length, and the number of incorporated sulfate and acetyl groups). When applied to a paradigmatic heparin/antithrombin system, the new method generates a series of oligomers with surprisingly distinct sulfation levels. The extent of sulfation of the minimal-length binder (hexamer) is relatively modest yet persistent, consistent with the notion of six sulfate groups being both essential and sufficient for antithrombin binding. However, the masses of longer surviving chains indicate complete sulfation of disaccharides beyond the hexasaccharide core. Molecular dynamics simulations confirm the existence of favorable electrostatic interactions between the high charge-density saccharide residues flanking the "canonical" antithrombin-binding hexasaccharide and the positive patch on the surface of the overall negatively charged protein. Furthermore, electrostatics may rescue the heparin/protein interaction in the absence of the canonical binding element.


Assuntos
Antitrombinas/química , Heparina/análise , Polissacarídeo-Liases/química , Antitrombinas/metabolismo , Bacteroides/enzimologia , Cromatografia em Gel , Heparina/metabolismo , Humanos , Espectrometria de Massas , Simulação de Dinâmica Molecular , Polissacarídeo-Liases/metabolismo , Impressão Tridimensional , Soluções
8.
J Pharm Biomed Anal ; 184: 113169, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32092629

RESUMO

Higher order structure of protein therapeutics is an important quality attribute, which dictates both potency and safety. While modern experimental biophysics offers an impressive arsenal of state-of-the-art tools that can be used for the characterization of higher order structure, many of them are poorly suited for the characterization of biopharmaceutical products. As a result, these analyses were traditionally carried out using classical techniques that provide relatively low information content. Over the past decade, mass spectrometry made a dramatic debut in this field, enabling the characterization of higher order structure of biopharmaceuticals as complex as monoclonal antibodies at a level of detail that was previously unattainable. At present, mass spectrometry is an integral part of the analytical toolbox across the industry, which is critical not only for quality control efforts, but also for discovery and development.


Assuntos
Produtos Biológicos/química , Espectrometria de Massas/métodos , Proteínas/química , Humanos , Conformação Proteica
9.
Biochim Biophys Acta Proteins Proteom ; 1868(2): 140334, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31786473

RESUMO

Aseptic processing and terminal sterilization become increasingly challenging as medical devices become more complex and include active biologics. Terminal sterilization is preferred for patient safety and production costs. We aimed to determine how sterilization using supercritical CO2 (scCO2) with low levels of peracetic acid (PAA) affects amino acids and human epidermal growth factor (EGF) as a model protein. In a benchtop reactivity test, the amino acids methionine, tryptophan, arginine and lysine reacted with low levels of PAA in solution. At PAA levels used for scCO2 sterilization, however, mass spectrometry only identified oxidative adducts on methionine and tryptophan. Mass spectrometry analysis of EGF exposed to scCO2/PAA identified oxidative adducts on residues Met21, Trp49 and Trp50, as well as a low level of truncations after residues Trp49 and Trp50. Importantly, processing of EGF in solution with scCO2 did not affect its native conformation, and sterilized EGF maintained its activity in cell proliferation assays. When processing samples in lyophilized form with scCO2/PAA, amino acids did not react with PAA and the presence of adducts was strongly reduced on methionine and tryptophan, both as single amino acids and in EGF. Truncation after tryptophan residues did not occur. EGF sterilized in the lyophilized form retained its activity when processing occurred with added moisture. These results have significant implications for the maintenance of biological function in sterilized decellularized scaffolds and the ability to manufacture terminally sterilized combination devices containing therapeutic peptides or proteins.


Assuntos
Dióxido de Carbono/química , Fator de Crescimento Epidérmico/química , Ácido Peracético/química , Esterilização , Células 3T3 , Animais , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Humanos , Espectrometria de Massas , Metionina/análise , Metionina/química , Camundongos , Oxirredução , Triptofano/análise , Triptofano/química
10.
Anal Chem ; 91(11): 7189-7198, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31083917

RESUMO

Metal labeling and ICP MS detection offer an alternative to commonly accepted techniques that are currently used to quantitate exogenous proteins in vivo, but modifying the protein surface with metal-containing groups inevitably changes its biophysical properties and is likely to affect trafficking and biodistribution. The approach explored in this work takes advantage of the presence of hexa-histidine tags in many recombinant proteins, which have high affinity toward a range of metals. While many divalent metals bind to poly histidine sequences reversibly, oxidation of imidazole-bound CoII or RuII is known to result in a dramatic increase of the binding strength. In order to evaluate the feasibility of using imidazole-bound metal oxidation as a means of attaching permanent tags to polyhistidine segments, a synthetic peptide YPDFEDYWMKHHHHHH was used as a model. RuII can be oxidized under ambient (aerobic) conditions, allowing any oxidation damage to the peptide beyond the metal-binding site to be avoided. The resulting peptide-RuIII complex is very stable, with the single hexa-histidine segment capable of accommodating up to three metal ions. Localization of RuIII within the hexa-histidine segment of the peptide was confirmed by tandem mass spectrometry. The RuIII/peptide binding appears to be irreversible, with both low- and high-molecular weight biologically relevant scavengers failing to strip the metal from the peptide. Application of this protocol to labeling a recombinant form of an 80 kDa protein transferrin allowed RuIII to be selectively placed within the His-tag segment. The metal label remained stable in the presence of ubiquitous scavengers and did not interfere with the receptor binding, while allowing the protein to be readily detected in serum at sub-nM concentrations. The results of this work suggest that ruthenium lends itself as an ideal metal tag for selective labeling of His-tag containing recombinant proteins to enable their sensitive detection and quantitation with ICP MS.


Assuntos
Rutênio/química , Transferrina/análise , Humanos , Espectrometria de Massas , Modelos Moleculares , Peptídeos/química , Proteínas Recombinantes/sangue
11.
Methods ; 144: 14-26, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29702225

RESUMO

Interfacing liquid chromatography (LC) with electrospray ionization (ESI) to enable on-line MS detection had been initially implemented using reversed phase LC, which in the past three decades remained the default type of chromatography used for LC/MS and LC/MS/MS studies of protein structure. In contrast, the advantages of other types of LC as front-ends for ESI MS, particularly those that allow biopolymer higher order structure to be preserved throughout the separation process, enjoyed relatively little appreciation until recently. However, the past few years witnessed a dramatic surge of interest in the so-called "native" (with "non-denaturing" being perhaps a more appropriate adjective) LC/MS and LC/MS/MS analyses within the bioanalytical and biophysical communities. This review focuses on recent advances in this field, with an emphasis on size exclusion and ion exchange chromatography as front-end platforms for protein characterization by LC/MS. Also discussed are the benefits provided by the integration of chemical reactions in the native LC/MS analyses, including both ion chemistry in the gas phase (e.g., limited charge reduction for characterization of highly heterogeneous biopolymers) and solution-phase reactions (using the recently introduced technique cross-path reactive chromatography).


Assuntos
Cromatografia por Troca Iônica/métodos , Espectrometria de Massas/métodos , Conformação Proteica , Proteínas/metabolismo , Ligantes , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteínas/química
12.
J Biol Chem ; 293(1): 324-332, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29150441

RESUMO

RcnR, a transcriptional regulator in Escherichia coli, derepresses the expression of the export proteins RcnAB upon binding Ni(II) or Co(II). Lack of structural information has precluded elucidation of the allosteric basis for the decreased DNA affinity in RcnR's metal-bound states. Here, using hydrogen-deuterium exchange coupled with MS (HDX-MS), we probed the RcnR structure in the presence of DNA, the cognate metal ions Ni(II) and Co(II), or the noncognate metal ion Zn(II). We found that cognate metal binding altered flexibility from the N terminus through helix 1 and modulated the RcnR-DNA interaction. Apo-RcnR and RcnR-DNA complexes and the Zn(II)-RcnR complex exhibited similar 2H uptake kinetics, with fast-exchanging segments located in the N terminus, in helix 1 (residues 14-24), and at the C terminus. The largest difference in 2H incorporation between apo- and Ni(II)- and Co(II)-bound RcnR was observed in helix 1, which contains the N terminus and His-3, and has been associated with cognate metal binding. 2H uptake in helix 1 was suppressed in the Ni(II)- and Co(II)-bound RcnR complexes, in particular in the peptide corresponding to residues 14-24, containing Arg-14 and Lys-17. Substitution of these two residues drastically affected DNA-binding affinity, resulting in rcnA expression in the absence of metal. Our results suggest that cognate metal binding to RcnR orders its N terminus, decreases helix 1 flexibility, and induces conformational changes that restrict DNA interactions with the positively charged residues Arg-14 and Lys-17. These metal-induced alterations decrease RcnR-DNA binding affinity, leading to rcnAB expression.


Assuntos
Cobalto/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Níquel/metabolismo , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cátions Bivalentes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Espectrometria de Massas , Proteínas Repressoras/química , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
13.
Analyst ; 141(3): 853-61, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26646585

RESUMO

Serum transferrin is a key player in iron homeostasis, and its ability to deliver iron to cells via the endosomal pathway critically depends on the presence of carbonate that binds this protein synergistically with ferric ion. Oxalate is another ubiquitous anionic species that can act as a synergistic anion, and in fact its interaction with transferrin is notably stronger compared to carbonate, preventing the protein from releasing the metal in the endosomal environment. While this raises concerns that high oxalate levels in plasma may interfere with iron delivery to tissues, concentration of free oxalate in blood appears to be a poor predictor of impeded availability of iron, as previous studies showed that it cannot displace carbonate from ferro-transferrin on a physiologically relevant time scale under the conditions mimicing plasma. In this work we present a new method that allows different forms of ferro-transferrin (carbonate- vs. oxalate-bound) to be distinguished from each other by removing this protein from plasma without altering the composition of the protein/metal/synergistic anion complexes, and determining their accurate masses using native electrospray ionization mass spectrometry (ESI MS). The new method has been validated using a mixture of recombinant proteins, followed by its application to the analysis of clinical samples of human plasma, demonstrating that native ESI MS can be used in clinical analysis.


Assuntos
Ferro/sangue , Transferrina/metabolismo , Transtorno Autístico/sangue , Carbonatos/sangue , Cromatografia em Gel , Humanos , Oxalatos/sangue , Albumina Sérica , Espectrometria de Massas por Ionização por Electrospray
14.
Eur J Mass Spectrom (Chichester) ; 21(3): 369-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26307718

RESUMO

Transferrin (Tf) is an 80 kDa iron-binding protein that is viewed as a promising drug carrier to target the central nervous system as a result of its ability to penetrate the blood-brain barrier. Among the many challenges during the development of Tf-based therapeutics, the sensitive and accurate quantitation of the administered Tf in cerebrospinal fluid (CSF) remains particularly difficult because of the presence of abundant endogenous Tf. Herein, we describe the development of a new liquid chromatography-mass spectrometry-based method for the sensitive and accurate quantitation of exogenous recombinant human Tf in rat CSF. By taking advantage of a His-tag present in recombinant Tf and applying Ni affinity purification, the exogenous human serum Tf can be greatly enriched from rat CSF, despite the presence of the abundant endogenous protein. Additionally, we applied a newly developed (18)O-labeling technique that can generate internal standards at the protein level, which greatly improved the accuracy and robustness of quantitation. The developed method was investigated for linearity, accuracy, precision, and lower limit of quantitation, all of which met the commonly accepted criteria for bioanalytical method validation.


Assuntos
Cromatografia Líquida de Alta Pressão/normas , Manejo de Espécimes/normas , Espectrometria de Massas por Ionização por Electrospray/normas , Transferrina/líquido cefalorraquidiano , Algoritmos , Animais , Calibragem/normas , Cromatografia Líquida de Alta Pressão/métodos , Estudos de Viabilidade , Humanos , Ratos , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Transferrina/genética , Estados Unidos
15.
Anal Chem ; 86(11): 5225-31, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24820935

RESUMO

Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) has become a potent technique to probe higher-order structures, dynamics, and interactions of proteins. While the range of proteins amenable to interrogation by HDX MS continues to expand at an accelerating pace, there are still a few classes of proteins whose analysis with this technique remains challenging. Disulfide-rich proteins constitute one of such groups: since the reduction of thiol-thiol bonds must be carried out under suboptimal conditions (to minimize the back-exchange), it frequently results in incomplete dissociation of disulfide bridges prior to MS analysis, leading to a loss of signal, inadequate sequence coverage, and a dramatic increase in the difficulty of data analysis. In this work, the dissociation of disulfide-linked peptide dimers produced by peptic digestion of the 80 kDa glycoprotein transferrin in the course of HDX MS experiments is carried out using electron capture dissociation (ECD). ECD results in efficient cleavage of the thiol-thiol bonds in the gas phase on the fast LC time scale and allows the deuterium content of the monomeric constituents of the peptide dimers to be measured individually. The measurements appear to be unaffected by hydrogen scrambling, even when high collisional energies are utilized. This technique will benefit HDX MS measurements for any protein that contains one or more disulfides and the potential gain in sequence coverage and spatial resolution would increase with disulfide bond number.


Assuntos
Medição da Troca de Deutério/métodos , Dissulfetos/análise , Proteínas/química , Animais , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica
16.
Proc Natl Acad Sci U S A ; 110(50): 20087-92, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277803

RESUMO

Characterization of structure and dynamics of nonnative protein states is important for understanding molecular mechanisms of processes as diverse as folding, binding, aggregation, and enzyme catalysis to name just a few; however, selectively probing local minima within rugged energy landscapes remains a problem. Mass spectrometry (MS) coupled with hydrogen/deuterium exchange (HDX) offers a unique advantage of being able to make a distinction among multiple protein conformers that coexist in solution; however, detailed structural interrogation of such states previously remained out of reach of HDX MS. In this work, we exploited the aforementioned unique feature of HDX MS in combination with the ability of MS to isolate narrow populations of protein ions to characterize individual protein conformers coexisting in solution in equilibrium. Subsequent fragmentation of the protein ions using electron-capture dissociation allowed us to allocate the deuterium distribution along the protein backbone, yielding a backbone-amide protection map for the selected conformer unaffected by contributions from other protein states present in solution. The method was tested with the small regulatory protein ubiquitin (Ub), which is known to form nonnative intermediate states under a variety of mildly denaturing conditions. Protection maps of these intermediate states obtained at residue-level resolution provide clear evidence that they are very similar to the so-called A-state of Ub that is formed in solutions with low pH and high alcohol. Method validation was carried out by comparing the backbone-amide protection map of native Ub with those deduced from high-resolution NMR measurements.


Assuntos
Medição da Troca de Deutério/métodos , Conformação Proteica , Proteínas/química , Espectrometria de Massas em Tandem/métodos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Ubiquitina/química
17.
Biochemistry ; 52(46): 8333-41, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24152109

RESUMO

It has been previously suggested that large amounts of oxalate in plasma could play a role in autism by binding to the bilobal iron transport protein transferrin (hTF), thereby interfering with iron metabolism by inhibiting the delivery of iron to cells. By examining the effect of the substitution of oxalate for the physiologically utilized synergistic carbonate anion in each lobe of hTF, we sought to provide a molecular basis for or against such a role. Our work clearly shows both qualitatively (6 M urea gels) and quantitatively (kinetic analysis by stopped-flow spectrofluorimetry) that the presence of oxalate in place of carbonate in each binding site of hTF does indeed greatly interfere with the removal of iron from each lobe (in the absence and presence of the specific hTF receptor). However, we also clearly demonstrate that once the iron is bound within each lobe of hTF, neither anion can displace the other. Additionally, as verified by urea gels and electrospray mass spectrometry, formation of completely homogeneous hTF-anion complexes requires that all iron must first be removed and hTF then reloaded with iron in the presence of either carbonate or oxalate. Significantly, experiments described here show that carbonate is the preferred binding partner; i.e., even if an equal amount of each anion is available during the iron loading process, the hTF-carbonate complex is formed.


Assuntos
Anemia Ferropriva/fisiopatologia , Transtorno Autístico/sangue , Carbonatos/metabolismo , Transtornos Globais do Desenvolvimento Infantil/sangue , Ferro/metabolismo , Oxalatos/sangue , Transferrina/química , Transferrina/metabolismo , Anemia Ferropriva/sangue , Animais , Células Cultivadas , Cricetinae , Humanos , Cinética
18.
Anal Chem ; 85(19): 9173-80, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23978257

RESUMO

Inadequate spatial resolution remains one of the most serious limitations of hydrogen/deuterium exchange-mass spectrometry (HDX-MS), especially when applied to larger proteins (over 30 kDa). Supplementing proteolytic fragmentation of the protein in solution with ion dissociation in the gas phase has been used successfully by several groups to obtain near-residue level resolution. However, the restrictions imposed by the LC-MS/MS mode of operation on the data acquisition time frame makes it difficult in many cases to obtain a signal-to-noise ratio adequate for reliable assignment of the backbone amide protection levels at individual residues. This restriction is lifted in the present work by eliminating the LC separation step from the workflow and taking advantage of the high resolving power and dynamic range of a Fourier transform ion cyclotron resonance-mass spectrometer (FTICR-MS). A residue-level resolution is demonstrated for a peptic fragment of a 37 kDa recombinant protein (N-lobe of human serum transferrin), using electron-capture dissociation as an ion fragmentation tool. The absence of hydrogen scrambling in the gas phase prior to ion dissociation is verified using redundant HDX-MS data generated by FTICR-MS. The backbone protection pattern generated by direct HDX-MS/MS is in excellent agreement with the known crystal structure of the protein but also provides information on conformational dynamics, which is not available from the static X-ray structure.


Assuntos
Medição da Troca de Deutério , Elétrons , Transferrina/análise , Ciclotrons , Análise de Fourier , Humanos , Espectrometria de Massas , Modelos Moleculares , Proteínas Recombinantes/sangue
19.
Adv Drug Deliv Rev ; 65(8): 1020-30, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23624418

RESUMO

Physiological barriers, such as the blood-brain barrier and intestinal epithelial barrier, remain significant obstacles towards wider utilization of biopharmaceutical products. Receptor-mediated transcytosis has long been viewed as an attractive means of crossing such barriers, but successful exploitation of this route requires better understanding of the interactions between the receptors and protein-based therapeutics. Detailed characterization of such processes at the molecular level is challenging due to the very large physical size and heterogeneity of these species, which makes use of many state-of-the art analytical techniques, such as high-resolution NMR and X-ray crystallography impractical. Mass spectrometry has emerged in the past decade as a powerful tool to study protein-receptor interactions, although its applications to investigate interaction of biopharmaceuticals with their physiological partners are still limited. We highlight the potential of this technique by considering several recent examples where it had been instrumental for understanding molecular mechanisms critical for receptor-mediated transcytosis of transferrin-based therapeutics.


Assuntos
Espectrometria de Massas/métodos , Receptores de Superfície Celular/metabolismo , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Mucosa Intestinal/metabolismo , Muramidase/química , Muramidase/metabolismo , Ligação Proteica , Transferrina/química , Transferrina/metabolismo
20.
Mol Pharm ; 10(5): 1998-2007, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23534953

RESUMO

Transferrin is a promising drug carrier that has the potential to deliver metals, small organic molecules and therapeutic proteins to cancer cells and/or across physiological barriers (such as the blood-brain barrier). Despite this promise, very few transferrin-based therapeutics have been developed and reached clinical trials. This modest success record can be explained by the complexity and heterogeneity of protein conjugation products, which also pose great challenges to their analytical characterization. In this work, we use lysozyme conjugated to transferrin as a model therapeutic that targets the central nervous system (where its bacteriostatic properties may be exploited to control infection) and develop analytical protocols based on electrospray ionization mass spectrometry to characterize its structure and interactions with therapeutic targets and physiological partners critical for its successful delivery. Mass spectrometry has already become an indispensable tool facilitating all stages of the protein drug development process, and this work demonstrates the enormous potential of this technique in facilitating the development of a range of therapeutically effective protein-drug conjugates.


Assuntos
Portadores de Fármacos/química , Muramidase/química , Transferrina/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/química , Fármacos do Sistema Nervoso Central/administração & dosagem , Fármacos do Sistema Nervoso Central/química , Química Farmacêutica , Humanos , Micrococcus/efeitos dos fármacos , Estrutura Molecular , Muramidase/administração & dosagem , Muramidase/metabolismo , Ligação Proteica , Receptores da Transferrina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Transferrina/administração & dosagem , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA