RESUMO
BACKGROUND AND PURPOSE: The presence of spot sign is associated with a high risk of hematoma growth. Our aim was to investigate the timing of the appearance, volume, and leakage rate of the spot sign for predicting hematoma growth in acute intracerebral hemorrhage using multiphase CTA. MATERIALS AND METHODS: In this single-center retrospective study, multiphase CTA in 3 phases was performed in acute intracerebral hemorrhage (defined as intraparenchymal ± intraventricular hemorrhages). Phases of the spot sign first appearance, spot sign volumes (microliter), and leakage rates among phases (microliter/second) were measured. Associations between baseline clinical and imaging variables including spot sign volume parameters (volume and leakage rate divided by median) and hematoma growth (>6 mL) were investigated using regression models. Receiver operating characteristic analysis was used as appropriate. RESULTS: Two hundred seventeen patients (131 men; median age, 70 years) were included. The spot sign was detected in 21.7%, 30.0%, and 29.0% in the first, second, and third phases, respectively, with median volumes of 19.7, 31.4, and 34.8 µl in these phases. Hematoma growth was seen in 44 patients (20.3%). By means of modeling, the following variables, namely the spot sign appearing in the first phase, first phase spot sign volume, spot sign appearing in the second or third phase, and spot sign positive and negative leakage rates, were associated with hematoma growth. Among patients with a spot sign, the absolute leakage rate accounting for both positive and negative leakage rates was also associated with hematoma growth (per 1-µl/s increase; OR, 1.26; 95% CI, 1.04-1.52). Other hematoma growth predictors were stroke history, baseline NIHSS score, onset-to-imaging time, and baseline hematoma volume (all P values < .05). CONCLUSIONS: The timing of the appearance of the spot sign, volume, and leakage rate were all associated with hematoma growth. Development of automated software to generate these spot sign volumetric parameters would be an important next step to maximize the potential of temporal intracerebral hemorrhage imaging such as multiphase CTA for identifying those most at risk of hematoma growth.
Assuntos
Hemorragia Cerebral , Humanos , Masculino , Feminino , Hemorragia Cerebral/diagnóstico por imagem , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Hematoma/diagnóstico por imagem , Angiografia por Tomografia Computadorizada/métodos , Idoso de 80 Anos ou mais , Angiografia Cerebral/métodos , Progressão da Doença , Valor Preditivo dos TestesRESUMO
PURPOSE: Metaphyseal corner fractures and posterior rib fractures are thought to only occur in settings of inflicted injury. We describe a case of siblings who presented with metaphyseal corner fractures and multiple posterior rib fractures who were later found to carry FKBP10 mutations, a rare cause of Osteogenesis Imperfecta (OI) known as Bruck syndrome. This clinical presentation led to a literature review examining fracture types in OI and inflicted injury. CASES: A 15-month-old male presented with multiple healing fractures of varying ages including posterior rib and metaphyseal corner fractures with no history of significant trauma. He had joint laxity, short stature and Wormian bones. His diagnosis of Bruck Syndrome led to investigations in his sibling at birth, which demonstrated the same fracture pattern including multiple posterior rib and metaphyseal corner fractures. They both had pathogenic compound heterozygous FKBP10 variants. LITERATURE REVIEW AND RESULTS: We performed a literature review evaluating the fracture pattern in cases investigated for inflicted injury and found to have OI. Fourteen articles reported 78 children with OI initially diagnosed as inflicted injury. Of these children, 71 (91%) were diagnosed with milder forms of OI (Sillence type I and IV). Sixty-four children (81%) had clinical signs of OI including blue sclera, dentinogenesis imperfecta, short stature, joint laxity and limb bowing. Fifteen (19%) children had fractures of high specificity for inflicted injury including metaphyseal corner fractures and posterior rib fractures and 58 (74%) had fractures of moderate specificity for inflicted injury such as bilateral fractures and fractures of different ages. CONCLUSION: Metaphyseal corner fractures and posterior rib fractures are highly associated with inflicted injury, but they have been reported in children with OI. Bruck syndrome, a rare and severe form of OI can present with metaphyseal and posterior rib fractures, including at birth. When features of OI are present in children with metaphyseal corner fractures and/or posterior rib fractures are present, genetic testing may be warranted.