Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurochem ; 153(1): 10-32, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630412

RESUMO

Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the CNS as well as the PNS must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, while these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields.


Assuntos
Orientação de Axônios/fisiologia , Axônios/fisiologia , Encéfalo/ultraestrutura , Animais , Axônios/ultraestrutura , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Humanos , Regeneração Nervosa , Quiasma Óptico/crescimento & desenvolvimento , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/fisiologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/fisiologia , Medula Espinal/ultraestrutura
2.
J Alzheimers Dis ; 68(2): 439-458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30775999

RESUMO

The accumulation and spreading of protein tau in the human brain are major features of neurodegenerative disorders known as tauopathies. In addition to several subcellular abnormalities, tau aggregation within neurons seems capable of triggering endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). In metazoans, full activation of a complex ER-UPR network may restore proteostasis and ER function or, if stress cannot be solved, commit cells to apoptosis. Due to these alternative outcomes (survival or death), the pharmacological manipulation of ER-UPR has become the focus of potential therapies in many human diseases, including tauopathies. Here we update and analyze the experimental data from human brain, cellular, and animal models linking tau accumulation and ER-UPR. We further discuss mechanistic aspects and put the ER-UPR into perspective as a possible therapeutic target in this group of diseases.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Estresse do Retículo Endoplasmático , Tauopatias/metabolismo , Tauopatias/patologia , Animais , Encéfalo/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Tauopatias/tratamento farmacológico
3.
Neurobiol Aging ; 60: 57-70, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28917667

RESUMO

The unfolded protein response (UPR) may be pathogenically related to Alzheimer's disease. Yet, the effects of chronic amyloid-ß42 (Aß42) accumulation and UPR activation upon neurotoxicity remain unclear. Here, we show that neuronal Aß42 expression in Drosophila activated the inositol-requiring protein-1/X-box binding protein 1 (XBP1) UPR branch before the onset of behavioral impairment and persisted with aging. Early upregulation of hsc3/BiP, a target of XBP1 and activating transcription factor 6 pathways, was also sustained in old animals. Downregulation of XBP1 enhanced neurotoxicity and the accumulation of Aß42 and polyubiquitinated proteins. Consistently, overexpression of spliced XBP1 reduced Aß42 and improved geotaxis in old flies. The activation of protein kinase RNA-like endoplasmic reticulum (ER) kinase contributed to the age-dependent geotaxis deficit. Spliced XBP1 gene targets ER degradation-enhancing mannosidase-like protein 1, ER degradation-enhancing mannosidase-like protein 2, and HRD1 were elevated in 5-day-old Aß42-expressing flies as compared to controls but not in 18-day-old flies. Our results indicate that inositol-requiring protein-1/XBP1 activation is neuroprotective and enhances Aß42 clearance. They also suggest that such response becomes inefficient with aging.


Assuntos
Envelhecimento , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Neuroproteção/genética , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/fisiologia , Animais
4.
Front Aging Neurosci ; 9: 61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28352227

RESUMO

The accumulation of amyloid ß peptide (Aß) in the brain of Alzheimer's disease (AD) patients begins many years before clinical onset. Such process has been proposed to be pathogenic through the toxicity of Aß soluble oligomers leading to synaptic dysfunction, phospho-tau aggregation and neuronal loss. Yet, a massive accumulation of Aß can be found in approximately 30% of aged individuals with preserved cognitive function. Therefore, within the frame of the "amyloid hypothesis", compensatory mechanisms and/or additional neurotoxic or protective factors need to be considered and investigated. Here we describe a modifier genetic screen in Drosophila designed to identify genes that modulate toxicity of Aß42 in the CNS. The expression of Aß42 led to its accumulation in the brain and a moderate impairment of negative geotaxis at 18 days post-eclosion (d.p.e) as compared with genetic or parental controls. These flies were mated with a collection of lines carrying chromosomal deletions and negative geotaxis was assessed at 5 and 18 d.p.e. Our screen is the first to take into account all of the following features, relevant to sporadic AD: (1) pan-neuronal expression of wild-type Aß42; (2) a quantifiable complex behavior; (3) Aß neurotoxicity associated with progressive accumulation of the peptide; and (4) improvement or worsening of climbing ability only evident in aged animals. One hundred and ninety-nine deficiency (Df) lines accounting for ~6300 genes were analyzed. Six lines, including the deletion of 52 Drosophila genes with human orthologs, significantly modified Aß42 neurotoxicity in 18-day-old flies. So far, we have validated CG11796 and identified CG17249 as a strong candidate (whose human orthologs are HPD and PRCC, respectively) by using RNAi or mutant hemizygous lines. PRCC encodes proline-rich protein PRCC (ppPRCC) of unknown function associated with papillary renal cell carcinoma. HPD encodes 4-hydroxyphenylpyruvate dioxygenase (HPPD), a key enzyme in tyrosine degradation whose Df causes autosomal recessive Tyrosinemia type 3, characterized by mental retardation. Interestingly, lines with a partial Df of HPD ortholog showed increased intraneuronal accumulation of Aß42 that coincided with geotaxis impairment. These previously undetected modifiers of Aß42 neurotoxicity in Drosophila warrant further study to validate their possible role and significance in the pathogenesis of sporadic AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA