Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 311(Pt 2): 137018, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36374782

RESUMO

Anaerobic co-digestion (AcoD) with suitable substrate ratios may have the potential to improve biogas process and could play a better role in nutrient management for biocircular economy. The goal of this study was to enhance biogas yield from AcoD of cow manure (CM) and canteen food waste (CFW), and pertinent co-digestion of suitable substrate ratios for nutrient management i. e NPK from linear to biocircular economy, using ruminant intestinal fluid as a source of inoculum. A mesophilic (37 ± 1 °C) laboratory-scale AcoD with varying CFW/CM ratios of (0:1, 1:4, 2:3, 1:1, 3:2, 4:1, and 1:0) based on wet weight was performed. The AcoD systems of different CFW/CM ratios were evaluated with a loading rate of 400 g/L in the presence of 100 g cow intestinal fluid (CIF) inoculation. All experimental AcoD systems yielded greater biogas (147-300 cm3/g VS) than the mono-digestion in which only CM (135 cm3/g VS) and CFW (146 cm3/g VS) were digested anaerobically. The AcoD system of CFW/CM with 4:1 showed the highest biogas yield (300 cm3/g VS), and VS and COD reduction rate (39.51% and 65.15%, respectively), and nutrient contents (6.53%). Moreover, the experiment results were verified by modified Gompertz model. This work provided a window of opportunity to examine the anaerobic co-digestion technology beyond biogas production and to put the current low-cost technology to use for nutrient management and as a better component of the biocircular economy for agriculture in Pakistan in order to achieve sustainable development goals.

2.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500251

RESUMO

This article reports the synthesis, characterization, geometrical optimization, and biological studies of new MBH-based organometallic compounds of medicinal significance. The ligand (MNHA) was prepared via the Morita-Baylis-Hillman (MBH) synthetic route, from aromatic aldehyde containing multiple functional groups. Metal complexes were prepared in an alkaline medium and under other suitable reaction conditions. Spectral and elemental analyses were used to identify the structural and molecular formulas of each compound. Optimized geometry was determined through density functional theory (DFT) B3LYP and 6-311++ G (d,p) basis set for the MBH adduct, whereas structures of novel complexes were optimized with the semi-empirical PM6 method. Powder XRD analysis furnished the crystal class of complexes, with Co3+, Cr3+, and Mn2+ being cubic, while Ni2+ was hexagonal, and Cu2+ was orthorhombic. Moreover, the ligand, along with Ni2+ and Co3+ complexes, showed profound antibacterial action against S. aureus, E. coli, B. pumilis, and S. typhi. Additionally, all of the complexes were shown to persist in the positive antioxidant potential of the ligand. Contrarily, not a single metal complex conserved the antifungal potentials of the ligand.


Assuntos
Complexos de Coordenação , Staphylococcus aureus , Ligantes , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Escherichia coli , Complexos de Coordenação/química , Bases de Schiff/química
3.
Nanomaterials (Basel) ; 12(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432270

RESUMO

Arsenic (III) is a toxic contaminant in water bodies, especially in drinking water reservoirs, and it is a great challenge to remove it from wastewater. For the successful extraction of arsenic (III), a nanocomposite material (ZnO-CuO/g-C3N4) has been synthesized by using the solution method. The large surface area and plenty of hydroxyl groups on the nanocomposite surface offer an ideal platform for the adsorption of arsenic (III) from water. Specifically, the reduction process involves a transformation from arsenic (III) to arsenic (V), which is favorable for the attachment to the -OH group. The modified surface and purity of the nanocomposite were characterized by SEM, EDX, XRD, FT-IR, HRTEM, and BET models. Furthermore, the impact of various aspects (temperatures, pH of the medium, the concentration of adsorbing materials) on adsorption capacity has been studied. The prepared sample displays the maximum adsorption capacity of arsenic (III) to be 98% at pH ~ 3 of the medium. Notably, the adsorption mechanism of arsenic species on the surface of ZnO-CuO/g-C3N4 nanocomposite at different pH values was explained by surface complexation and structural variations. Moreover, the recycling experiment and reusability of the adsorbent indicate that a synthesized nanocomposite has much better adsorption efficiency than other adsorbents. It is concluded that the ZnO-CuO/g-C3N4 nanocomposite can be a potential candidate for the enhanced removal of arsenic from water reservoirs.

4.
Materials (Basel) ; 15(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955354

RESUMO

Two-dimensional (2D) tri-TMDCs carrier dynamics provide a platform for studying excitons through Ultrafast Pump-Probe Transient Absorption Spectroscopy. Here we studied the ZrTe3 nanosheets (NTs) exciton dynamics by transient absorption (TA) spectrometer. We observed different carrier dynamics in the ZrTe3 NTs sample at different pump powers and with many wavelengths in the transient absorption spectrometer. The shorter life decay constant is associated with electron-phonon relaxation. Similarly, the longer-life decay constant represents the long live process that is associated with charge separation. The interactions between carrier-phonons at nanoscale materials can be changed by phonons quantum confinements. The hot carrier lifetime determined the strength of carrier phonon interactions. The value of fast decay in the conduction band is due to carrier relaxation or the carrier gets trapped due to surface states or localized defects. The value of slow decay is due to the recombination of surface state and localized defects processes. The lifetime declines for long wavelengths as size decreases. Whereas, during short wavelength-independent decay, carrier characteristics have been observed. TA spectroscopy is employed to investigate insight information of the carrier's dynamical processes such as carrier lifetime, cooling dynamics, carrier diffusion, and carrier excitations. The absorption enhanced along excitons density with the increase of pump power, which caused a greater number of carriers in the excited state than in the ground state. The TA signals consist of trap carriers and (electron-hole) constituents, which can be increased by TA changes that rely on photoexcitation and carrier properties.

5.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956800

RESUMO

Scientific research is being compelled to develop highly efficient and cost-effective energy-storing devices such as supercapacitors (SCs). The practical use of SC devices is hindered by their low energy density and poor rate capability due to the binding agents in fabricating electrodes. Herein, we proposed flower-like highly open-structured binder-free ZnCo2O4 micro-flowers composed of nanosheets supported in nickel foam (ZnCoO@NF) with improved rate capability up to 91.8% when current varied from 2 to 20 A·g-1. The ZnCoO@NF electrode exhibited a superior specific capacitance of 1132 F·g-1 at 2 A·g-1 and revealed 99% cycling stability after 7000 cycles at a high current density of 20 A·g-1. The improved performance of the ZnCoO@NF electrode is attributed to the highly stable structure of the micro/nano-multiscale architecture, which provides both the high conduction of electrons and fast ionic transportation paths simultaneously.

6.
Materials (Basel) ; 15(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35329701

RESUMO

Considerable efforts are underway to rationally design and synthesize novel electrode materials for high-performance supercapacitors (SCs). However, the creation of suitable materials with high capacitance remains a big challenge for energy storage devices. Herein, unique three-dimensional (3D) ZnO hexagonal cubes on carbon cloth (ZnO@CC) were synthesized by invoking a facile and economical hydrothermal method. The mesoporous ZnO@CC electrode, by virtue of its high surface area, offers rich electroactive sites for the fast diffusion of electrolyte ions, resulting in the enhancement of the SC's performance. The ZnO@CC electrode demonstrated a high specific capacitance of 352.5 and 250 F g-1 at 2 and 20 A g-1, respectively. The ZnO@CC electrode revealed a decent stability of 84% over 5000 cycles at 20 A g-1 and an outstanding rate-capability of 71% at a 10-fold high current density with respect to 2 A g-1. Thus, the ZnO@CC electrode demonstrated improved electrochemical performance, signifying that ZnO as is promising candidate for SCs applications.

7.
Nanomaterials (Basel) ; 13(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36616031

RESUMO

A high capacitance and widened voltage frames for an aqueous supercapacitor system are challenging to realize simultaneously in an aqueous medium. The severe water splitting seriously restricts the narrow voltage of the aqueous electrolyte beyond 2 V. To overcome this limitation, herein, we proposed the facile wet-chemical synthesis of a new CuSe-TiO2-GO ternary nanocomposite for hybrid supercapacitors, thus boosting the specific energy up to some maximum extent. The capacitive charge storage mechanism of the CuSe-TiO2-GO ternary nanocomposite electrode was tested in an aqueous solution with 3 M KOH as the electrolyte in a three-cell mode assembly. The voltammogram analysis manifests good reversibility and a remarkable capacitive response at various currents and sweep rates, with a durable rate capability. At the same time, the discharge/charge platforms realize the most significant capacitance and a capacity of 920 F/g (153 mAh/g), supported by the impedance analysis with minimal resistances, ensuring the supply of electrolyte ion diffusion to the active host electrode interface. The built 2 V CuSe-TiO2-GO||AC-GO||KOH hybrid supercapacitor accomplished a significant capacitance of 175 F/g, high specific energy of 36 Wh/kg, superior specific power of 4781 W/kg, and extraordinary stability of 91.3% retention relative to the stable cycling performance. These merits pave a new way to build other ternary nanocomposites to achieve superior performance for energy storage devices.

8.
Polymers (Basel) ; 13(9)2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-34063011

RESUMO

Application of polymer-flooding systems in secondary and tertiary oil recovery represents a real challenge for oil industry. In this work, our main objective is to explore possibilities of making use of xanthan-g-polyacrylamide for polymer flooding in a particular Devonian oilfield of medium salinity. The graft polymer was synthesized by using microwave-assisted graft copolymerization reaction of acrylamide on xanthan. The synthesized copolymer with optimized grafting parameters has been characterized by Infrared Spectroscopy and Thermal Analysis (DSC). Rheological analysis by steady shear and oscillatory flow experiments have been subsequently performed for xanthan and grafted xanthan under reservoir conditions. In steady shear, as expected the grafted polymer solutions flow as shear-thinning materials and apparent viscosity showed good fits with Cross's model. The viscosity losses due to salinity or temperature are more controlled for the grafted xanthan compared to pristine xanthan. When the grafted polymer concentration is increased to 2000 ppm the losses were halved. In oscillatory shear, the copolymer solutions followed a global behavior of semi-dilute entangled systems; furthermore, all dynamic properties were influenced by the brine salinity. Compared to xanthan, the elastic properties of xanthan-g-polyacrylamide solutions have been significantly improved in saline media and the losses in elasticity of grafted polymer solutions are lower.

9.
Materials (Basel) ; 14(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803707

RESUMO

Soft matter is a class of materials with flexibility properties and the ability to easily deform and self-assemble into complex structures [...].

10.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513925

RESUMO

The capability of some polymers, such as chitosan, to form low cost gels under mild conditions is of great application interest. Ionotropic gelation of chitosan has been used predominantly for the preparation of gel beads for biomedical application. Only in the last few years has the use of this method been extended to the fabrication of chitosan-based flat structures. Herein, after an initial analysis of the major applications of chitosan flat membranes and films and their usual methods of synthesis, the process of ionotropic gelation of chitosan and some recently proposed novel procedures for the synthesis of flat structures are presented.


Assuntos
Quitosana/química , Géis/química , Humanos , Polímeros/química
11.
Materials (Basel) ; 13(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560176

RESUMO

Next-generation wearable technology needs portable flexible energy storage, conversion, and biosensor devices that can be worn on soft and curved surfaces. The conformal integration of these devices requires the use of soft, flexible, light materials, and substrates with similar mechanical properties as well as high performances. In this review, we have collected and discussed the remarkable research contributions of recent years, focusing the attention on the development and arrangement of soft and flexible materials (electrodes, electrolytes, substrates) that allowed traditional power sources and sensors to become viable and compatible with wearable electronics, preserving or improving their conventional performances.

12.
Molecules ; 25(7)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252314

RESUMO

(1) Background: Ionotropic gelation of cost-effective and eco-friendly biopolymer chitosan (Chit) is a novel and promising approach to the one-step synthesis of proton-conducting fuel cell bio-membranes.The method discovered by the author in 2011 and subsequently drowned among very few papers. This work aimed to relaunch this method through clear and effective communication of new unpublished results emphasizing the key aspects of this topic for successful dissemination of the results and significant future developments. (2) Methods and results: The mechanism of in-situ ionotropic gelation of Chit on an alumina substrate by phosphotungtate anions (PWA3-) was discussed and analyzed. The study sheds light on the effect of prolonged post-treatment in phosphotungstic acid (PWA) solution on the obtained chitosan/phosphotungstate (Chit-PWA) flat structures. Methods used included combined structural (XRD), thermal-gravimetric (DTG), electrochemical (in-situ EIS), compositional (EDX),morphological analysis (SEM), as well as the performances in a low temperature H2/O2 fuel cell(4) Conclusions: This contribution discloses novel possibilities aimed at increasing the impact of ionotropic gelation of chitosan on the scientific community working on the synthesis of novel proton conductive bio-composite membranes and structures.


Assuntos
Óxido de Alumínio/química , Quitosana/síntese química , Quitosana/química , Condutividade Elétrica , Técnicas Eletroquímicas , Géis/síntese química , Géis/química , Ácido Fosfotúngstico/química , Prótons
13.
Polymers (Basel) ; 9(1)2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-30970694

RESUMO

Understanding the lateral variations in the elemental and chemical state of constituents induced by electrochemical reactions at nanoscales is crucial for the advancement of electrochemical materials science. This requires in situ studies to provide observables that contribute to both modeling beyond the phenomenological level and exactly transducing the functionally relevant quantities. A range of X-ray coherent diffraction imaging (CDI) approaches have recently been proposed for imaging beyond the diffraction limit with potentially dramatic improvements in time resolution with chemical sensitivity. In this paper, we report a selection of ptychography results obtained in situ during the electrodeposition of a metal⁻polymer nanocomposite. Our selection includes dynamic imaging during electrochemically driven growth complemented with absorption and phase spectroscopy with high lateral resolution. We demonstrate the onset of morphological instability feature formation and correlate the chemical state of Mn with the local growth rate controlled by the current density distribution resulting from morphological evolution.

14.
J Anal Methods Chem ; 2016: 2030675, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28042491

RESUMO

This paper reports on the quantitative assessment of the oxygen reduction reaction (ORR) electrocatalytic activity of electrodeposited Mn/polypyrrole (PPy) nanocomposites for alkaline aqueous solutions, based on the Rotating Disk Electrode (RDE) method and accompanied by structural characterizations relevant to the establishment of structure-function relationships. The characterization of Mn/PPy films is addressed to the following: (i) morphology, as assessed by Field-Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscope (AFM); (ii) local electrical conductivity, as measured by Scanning Probe Microscopy (SPM); and (iii) molecular structure, accessed by Raman Spectroscopy; these data provide the background against which the electrocatalytic activity can be rationalised. For comparison, the properties of Mn/PPy are gauged against those of graphite, PPy, and polycrystalline-Pt (poly-Pt). Due to the literature lack of accepted protocols for precise catalytic activity measurement at poly-Pt electrode in alkaline solution using the RDE methodology, we have also worked on the obtainment of an intralaboratory benchmark by evidencing some of the time-consuming parameters which drastically affect the reliability and repeatability of the measurement.

15.
ACS Appl Mater Interfaces ; 6(22): 19621-9, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25369153

RESUMO

This paper reports an investigation into the aging of pyrolyzed cobalt/polypyrrole (Co/PPy) oxygen reduction reaction (ORR) electrocatalysts, based on quasi-in-situ photoelectron microspectroscopy. The catalyst precursor was prepared by potentiostatic reverse-pulse coelectrodeposition from an acetonitrile solution on graphite. Accelerated aging was obtained by quasi-in-situ voltammetric cycling in an acidic electrolyte. Using photoelectron imaging and microspectroscopy of single Co/PPy grains at a resolution of 100 nm, we tracked the ORR-induced changes in the morphology and chemical state of the pristine material, consisting of uniformly distributed ∼20 nm nanoparticles, initially consisting of a mixture of Co(II) and Co(III) oxidation states in almost equal amounts. The evolution of the Co 2p, O 1s, and N 1s spectra revealed that the main effects of aging are a gradual loss of the Co present at the surface and the reduction of Co(III) to Co(II), accompanied by the emergence and growth of a N 1s signal, corresponding to electrocatalytically active C-N sites.

16.
Acta Chim Slov ; 61(2): 263-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25125109

RESUMO

Electrodeposition of graphene-supported Co for ORR electrocatalysts from an acetonitrile solution has been studied by a multi-technique approach, combining a suite of spectroscopic methods with electrochemical measurements, allowing a molecular-level understanding of potentiostatic and pulsed-potential plating processes from the organic solvent onto a freestanding graphene film. The formation of the graphene film by the light-scribe approach has been monitored by Raman spectroscopy; the electrodeposition process has been clarified by cyclic voltammetry and the compositional and chemical-state distribution of Co have been investigated ex situ by soft X-ray absorption spectroscopy and fluorescence mapping, showing that both spatial distribution and valence state are homogeneous and independent of the local current density. The deposit consists in micrometric aggregates of Co/CoO nanoparticles with diameter ca. 30 nm (pulsed) and 200 nm (potentiostatic deposition). Potentiostatic deposition allows to obtain better ORR electrocatalytic perfomance in terms of nnumber of transferred electrons, onset/ half-wave potential and current density.

17.
Anal Chem ; 86(1): 664-70, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24283887

RESUMO

In this paper we report on the fabrication and testing of a novel concept of sealed electrochemical microcell for in situ soft X-ray microspectroscopy in transmission, dedicated for nonvacuum compatible electrolytes. The microcell, fabricated using ultraviolet lithography, at variance with previous versions of electrochemical wet cells, that featured an optical window glued on top of the electrode system and a very limited electrolyte volume, the device presented here is a single solid block based around a microfabricated channel with fixed optical windows and apt for microfluidic work. Moreover, this cell allows to employ an advanced electrodic geometry developed in our group - so far used only in open electrochemical cells for work with vacuum-compatible electrolytes - also with low-vapor pressure liquids, possibly saturated with the required gases. The cell optimal electrode design allows three-electrode electrochemical control typical of traditional electrochemical experiments. The first electrochemical experiments with this new cell explore the electrochemical growth of a Co-polypyrrole, a composite electrocatalyst material with promising performance to replace the expensive Pt catalyst in fuel-cell oxygen electrodes. Morphological and chemical-state distributions of Co codeposited with polypyrrole has been followed as a function of time and position, yielding unprecedented information on the processes relevant to the synthesis of this catalyst.


Assuntos
Técnicas Eletroquímicas/métodos , Microanálise por Sonda Eletrônica/métodos , Galvanoplastia/métodos , Oxigênio/análise , Platina , Polímeros/análise , Pirróis/análise , Catálise , Oxigênio/metabolismo , Polímeros/metabolismo , Pirróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA